elasticsearchHow can I use Elasticsearch KNN to find similar documents?
K Nearest Neighbors (KNN) is a machine learning algorithm used for finding similar documents in an Elasticsearch index. It works by computing the similarity between documents using a distance metric such as Euclidean or cosine distance. The algorithm then returns the K nearest neighbors to a given document.
Example code
GET /my_index/_search
{
"query": {
"knn": {
"my_field": {
"vector": [1,2,3],
"k": 10
}
}
}
}
This example code searches the index my_index for documents similar to the given vector [1,2,3], and returns the 10 nearest neighbors.
The code consists of several parts:
- The
GETcommand which specifies the index to search. - The
querysection, which contains theknnquery with themy_fieldfield containing the vector to search, and thekparameter specifying the number of nearest neighbors to return.
For more information on using KNN in Elasticsearch, please refer to the Elasticsearch KNN documentation.
More of Elasticsearch
- How can I use elasticsearch zone awareness to improve my software development?
- How can I perform a case-insensitive wildcard search using Elasticsearch?
- How can I use Elasticsearch with Zammad?
- How do I check which version of Java is compatible with Elasticsearch?
- How can I use Elasticsearch and ZFS together?
- How can I use Elasticsearch and Zabbix together for software development?
- How can I use Elasticsearch and Zookeeper together to manage distributed applications?
- How can I configure the timeout for an Elasticsearch query?
- How can I use YouTube to learn about Elasticsearch?
- How do I use an Elasticsearch term query?
See more codes...