julialangHow to work with GPUs in JuliaLang?
JuliaLang supports GPU programming through the CUDA.jl package. To use it, you need to have a CUDA-enabled GPU and the CUDA Toolkit installed.
using CUDA
# Allocate memory on the GPU
a = CUDA.zeros(Float32, 10)
# Copy data from the CPU to the GPU
b = CUDA.ones(Float32, 10)
CUDA.copy!(a, b)
# Perform an operation on the GPU
c = a .+ b
# Copy data from the GPU to the CPU
d = Array(c)
Output example
10-element Array{Float32,1}:
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0
Code explanation
using CUDA
: Loads the CUDA.jl package.a = CUDA.zeros(Float32, 10)
: Allocates 10 elements of type Float32 on the GPU.b = CUDA.ones(Float32, 10)
: Allocates 10 elements of type Float32 on the GPU and sets them to 1.CUDA.copy!(a, b)
: Copies the data fromb
toa
.c = a .+ b
: Performs an element-wise addition ofa
andb
on the GPU.d = Array(c)
: Copies the data fromc
to the CPU.
Helpful links
More of Julialang
- How to test code in JuliaLang?
- How to work with linear algebra in JuliaLang?
- How to use lambda functions in JuliaLang?
- How to get JuliaLang version?
- How to use tuples in JuliaLang?
- How to use try catch in JuliaLang?
- How to round numbers in JuliaLang?
- How to use the JuliaLang package manager?
- How to create plots in JuliaLang?
See more codes...