9951 explained code solutions for 126 technologies


python-scikit-learnCosine similarity


from sklearn import metrics
cs = metrics.pairwise.cosine_similarity([[1, 2], [4, 5], [7, 19]])ctrl + c
from sklearn import

import module from scikit-learn

.cosine_similarity(

calculate cosine similarity (L2-normalized dot product of vectors)


Usage example

from sklearn import metrics

cs = metrics.pairwise.cosine_similarity([[1, 2], [4, 5], [7, 19]])
print(cs)
output
[[1.         0.97780241 0.99388373]
 [0.97780241 1.         0.9486833 ]
 [0.99388373 0.9486833  1.        ]]