9951 explained code solutions for 126 technologies


python-scipyHow can I use Python and SciPy to optimize my code?


Python and SciPy are powerful tools for optimizing code. SciPy is a library of scientific computing tools that can be used to optimize code, including linear algebra, optimization, integration, and statistics.

To optimize code using Python and SciPy, one can use SciPy's optimization functions. For example, the scipy.optimize.minimize function can be used to minimize a function's output. The following example code minimizes the function f(x) = x^2 + 5x + 6:

from scipy.optimize import minimize

def f(x):
    return x**2 + 5*x + 6

res = minimize(f, [0])

print(res)

Output example

      fun: -3.0
 hess_inv: array([[0.5]])
      jac: array([0.])
  message: 'Optimization terminated successfully.'
     nfev: 9
      nit: 2
     njev: 3
   status: 0
  success: True
        x: array([-3.])

Code explanation

  • from scipy.optimize import minimize imports the SciPy minimize function
  • def f(x): defines a function to minimize
  • res = minimize(f, [0]) calls the SciPy minimize function, passing in the function to minimize and an initial guess for the solution
  • print(res) prints the result of the optimization

Helpful links

Edit this code on GitHub