python-scipyHow can I use Python and SciPy to optimize my code?
Python and SciPy are powerful tools for optimizing code. SciPy is a library of scientific computing tools that can be used to optimize code, including linear algebra, optimization, integration, and statistics.
To optimize code using Python and SciPy, one can use SciPy's optimization functions. For example, the scipy.optimize.minimize
function can be used to minimize a function's output. The following example code minimizes the function f(x) = x^2 + 5x + 6
:
from scipy.optimize import minimize
def f(x):
return x**2 + 5*x + 6
res = minimize(f, [0])
print(res)
Output example
fun: -3.0
hess_inv: array([[0.5]])
jac: array([0.])
message: 'Optimization terminated successfully.'
nfev: 9
nit: 2
njev: 3
status: 0
success: True
x: array([-3.])
Code explanation
from scipy.optimize import minimize
imports the SciPy minimize functiondef f(x):
defines a function to minimizeres = minimize(f, [0])
calls the SciPy minimize function, passing in the function to minimize and an initial guess for the solutionprint(res)
prints the result of the optimization
Helpful links
More of Python Scipy
- How do I create a 2D array of zeros using Python and NumPy?
- How do I use Scipy zeros in Python?
- How can I use Python SciPy to fit a model?
- How can I use Python Scipy to zoom in on an image?
- How do I create an array of zeros with the same shape as an existing array using Python and NumPy?
- How can I use Python and SciPy to find the zeros of a function?
- How can I use Python and Numpy to parse XML data?
- How can I check if a certain version of Python is compatible with SciPy?
- How do I calculate the cross-correlation of two arrays using Python and NumPy?
- How do I use Python Scipy to perform a Z test?
See more codes...