python-scipyHow can I use Python and SciPy to optimize my code?
Python and SciPy are powerful tools for optimizing code. SciPy is a library of scientific computing tools that can be used to optimize code, including linear algebra, optimization, integration, and statistics.
To optimize code using Python and SciPy, one can use SciPy's optimization functions. For example, the scipy.optimize.minimize function can be used to minimize a function's output. The following example code minimizes the function f(x) = x^2 + 5x + 6:
from scipy.optimize import minimize
def f(x):
return x**2 + 5*x + 6
res = minimize(f, [0])
print(res)
Output example
fun: -3.0
hess_inv: array([[0.5]])
jac: array([0.])
message: 'Optimization terminated successfully.'
nfev: 9
nit: 2
njev: 3
status: 0
success: True
x: array([-3.])
Code explanation
from scipy.optimize import minimizeimports the SciPy minimize functiondef f(x):defines a function to minimizeres = minimize(f, [0])calls the SciPy minimize function, passing in the function to minimize and an initial guess for the solutionprint(res)prints the result of the optimization
Helpful links
More of Python Scipy
- How can I use Python and SciPy to find the zeros of a function?
- How can I use Python and Numpy to parse XML data?
- How do I use Python XlsxWriter to write a NumPy array to an Excel file?
- How to use Python, XML-RPC, and NumPy together?
- How can I use Python Numpy to select elements from an array based on multiple conditions?
- How do I use Python Scipy to perform a Z test?
- How can I use Scipy with Python?
- How do I use the scipy ttest_ind function in Python?
- How do I create a 2D array of zeros using Python and NumPy?
- How do I check the version of Python SciPy I'm using?
See more codes...