python-scipyHow can I use Python Scipy's random variate sampling functions?
Scipy's random variate sampling functions allow you to generate random numbers from a variety of probability distributions. You can use the scipy.stats.rvs() function to generate random variates from a given probability distribution. For example, to generate random variates from a standard normal distribution, you can use the following code:
from scipy.stats import norm
# Generate 10 random variates from a standard normal distribution
norm.rvs(size=10)
# Output: array([-0.81418096, 1.56905525, -0.46947439, 0.35678637, 1.06354542,
# 0.32738587, -0.91928847, -0.84538123, 0.67752869, -1.05862925])
The code above consists of the following parts:
-
from scipy.stats import norm: This imports thenormclass from thescipy.statsmodule, which contains functions related to the normal probability distribution. -
norm.rvs(size=10): This calls thenorm.rvs()function, which generates random variates from a standard normal distribution. Thesizeargument specifies the number of random variates to generate.
More information about Scipy's random variate sampling functions can be found in the Scipy documentation.
More of Python Scipy
- How can I use Python and SciPy to find the zeros of a function?
- How can I use Python and Numpy to parse XML data?
- How do I use Python XlsxWriter to write a NumPy array to an Excel file?
- How to use Python, XML-RPC, and NumPy together?
- How can I use Python Numpy to select elements from an array based on multiple conditions?
- How do I use Python Scipy to perform a Z test?
- How can I use Scipy with Python?
- How do I use the scipy ttest_ind function in Python?
- How do I create a 2D array of zeros using Python and NumPy?
- How do I check the version of Python SciPy I'm using?
See more codes...