python-scipyHow can I use Python SciPy to fit a model?
Using the Python SciPy package, you can fit a model to data by using the curve_fit function. This function takes a function that describes the model, an array of x-values, and an array of y-values, and returns an array of parameters that best fit the data. For example,
from scipy.optimize import curve_fit
def func(x, a, b):
return a * x + b
xdata = [0, 1, 2]
ydata = [0, 1, 2]
popt, pcov = curve_fit(func, xdata, ydata)
print(popt)
The above code would output [1.0, 0.0] as the parameters that best fit the data.
Code explanation
from scipy.optimize import curve_fit: imports thecurve_fitfunction from the SciPy packagedef func(x, a, b):: defines the model function with two parameters,aandbxdata = [0, 1, 2]andydata = [0, 1, 2]: defines the x- and y-values to fit the model topopt, pcov = curve_fit(func, xdata, ydata): callscurve_fitto fit the model to the dataprint(popt): prints the best-fit parameters
Helpful links
More of Python Scipy
- How do I create a 2D array of zeros using Python and NumPy?
- How can I check if a certain version of Python is compatible with SciPy?
- How can I use Python and SciPy to find the zeros of a function?
- How do I create a numpy array of zeros using Python?
- How do I use Scipy zeros in Python?
- How can I use Python Scipy to zoom in on an image?
- How do I use Python and SciPy to create a tutorial PDF?
- How to use Python, XML-RPC, and NumPy together?
- How do I use the Python Scipy package?
- How do I use the Scipy freqz function in Python?
See more codes...