python-scipyHow can I use Python SciPy to fit a model?
Using the Python SciPy package, you can fit a model to data by using the curve_fit
function. This function takes a function that describes the model, an array of x-values, and an array of y-values, and returns an array of parameters that best fit the data. For example,
from scipy.optimize import curve_fit
def func(x, a, b):
return a * x + b
xdata = [0, 1, 2]
ydata = [0, 1, 2]
popt, pcov = curve_fit(func, xdata, ydata)
print(popt)
The above code would output [1.0, 0.0]
as the parameters that best fit the data.
Code explanation
from scipy.optimize import curve_fit
: imports thecurve_fit
function from the SciPy packagedef func(x, a, b):
: defines the model function with two parameters,a
andb
xdata = [0, 1, 2]
andydata = [0, 1, 2]
: defines the x- and y-values to fit the model topopt, pcov = curve_fit(func, xdata, ydata)
: callscurve_fit
to fit the model to the dataprint(popt)
: prints the best-fit parameters
Helpful links
More of Python Scipy
- How do I create a 2D array of zeros using Python and NumPy?
- How do I use Python XlsxWriter to write a NumPy array to an Excel file?
- How can I use Python Scipy to perform a wavelet transform?
- How can I check if a certain version of Python is compatible with SciPy?
- How can I use Python and SciPy to generate a uniform distribution?
- How do I use the NumPy transpose function in Python?
- How do I use the scipy ttest_ind function in Python?
- How do I use Python and SciPy to create a tutorial PDF?
- How can I use Python and SciPy to visualize data?
- How do I use the trapz function in Python SciPy?
See more codes...