python-scipyHow do I calculate the norm of a numpy array in Python?
The norm of a numpy array is the length of the array, which can be calculated using the numpy.linalg.norm() function.
import numpy as np
arr = np.array([1, 2, 3])
norm = np.linalg.norm(arr)
print(norm)
Output example
3.7416573867739413
The code above:
import numpy as np: imports the numpy library into the scriptarr = np.array([1, 2, 3]): creates a numpy array from the list of numbersnorm = np.linalg.norm(arr): calculates the norm of the numpy arrayprint(norm): prints the result
Helpful links
More of Python Scipy
- How do I use Scipy zeros in Python?
- How do I create a 2D array of zeros using Python and NumPy?
- How can I use Python and SciPy to find the zeros of a function?
- How can I use the x.shape function in Python Numpy?
- How do I use Python Numpy to read and write Excel (.xlsx) files?
- How can I check if a certain version of Python is compatible with SciPy?
- How can I use Python and Numpy to zip files?
- How can I use Python and SciPy together online?
- How can I install and use SciPy on Ubuntu?
- How can I use Python and SciPy to implement a quantum Monte Carlo simulation?
See more codes...