python-scipyHow do I use Python SciPy to bootstrap a dataset?
Bootstrapping is a powerful technique for estimating statistics on a dataset by resampling with replacement. SciPy provides a convenient function scipy.stats.bootstrap to do this.
Example code
import numpy as np
from scipy.stats import bootstrap
data = np.array([1, 2, 3, 4, 5, 6, 7, 8])
bootstrap_means = bootstrap(data, 1000, np.mean)The above code will generate 1000 bootstrap samples of the dataset and calculate the mean of each sample. The output of the code will be a numpy array of 1000 means.
Code explanation
- import numpy as np: Imports the numpy library as- np.
- from scipy.stats import bootstrap: Imports the bootstrap function from the SciPy stats module.
- data = np.array([1, 2, 3, 4, 5, 6, 7, 8]): Creates an array of the data to be bootstrapped.
- bootstrap_means = bootstrap(data, 1000, np.mean): Calls the bootstrap function with the data, the number of bootstrap samples to generate, and the function to use to calculate the statistic (in this case, the mean).
Helpful links
More of Python Scipy
- How do I use Python XlsxWriter to write a NumPy array to an Excel file?
- How can I check if a certain version of Python is compatible with SciPy?
- How do I create a 2D array of zeros using Python and NumPy?
- How do I use Scipy zeros in Python?
- How can I use Python and SciPy to find the zeros of a function?
- How can I use Python Scipy to zoom in on an image?
- How can I use Python and Numpy to parse XML data?
- How can I install and use SciPy on Ubuntu?
- How do I download a Python Scipy .whl file?
- How do I calculate the cross-correlation of two arrays using Python and NumPy?
See more codes...