9951 explained code solutions for 126 technologies


python-scipyHow do I use Python SciPy to bootstrap a dataset?


Bootstrapping is a powerful technique for estimating statistics on a dataset by resampling with replacement. SciPy provides a convenient function scipy.stats.bootstrap to do this.

Example code

import numpy as np
from scipy.stats import bootstrap

data = np.array([1, 2, 3, 4, 5, 6, 7, 8])
bootstrap_means = bootstrap(data, 1000, np.mean)

The above code will generate 1000 bootstrap samples of the dataset and calculate the mean of each sample. The output of the code will be a numpy array of 1000 means.

Code explanation

  1. import numpy as np: Imports the numpy library as np.
  2. from scipy.stats import bootstrap: Imports the bootstrap function from the SciPy stats module.
  3. data = np.array([1, 2, 3, 4, 5, 6, 7, 8]): Creates an array of the data to be bootstrapped.
  4. bootstrap_means = bootstrap(data, 1000, np.mean): Calls the bootstrap function with the data, the number of bootstrap samples to generate, and the function to use to calculate the statistic (in this case, the mean).

Helpful links

Edit this code on GitHub