python-scipyHow do I use Python SciPy to bootstrap a dataset?
Bootstrapping is a powerful technique for estimating statistics on a dataset by resampling with replacement. SciPy provides a convenient function scipy.stats.bootstrap
to do this.
Example code
import numpy as np
from scipy.stats import bootstrap
data = np.array([1, 2, 3, 4, 5, 6, 7, 8])
bootstrap_means = bootstrap(data, 1000, np.mean)
The above code will generate 1000 bootstrap samples of the dataset and calculate the mean of each sample. The output of the code will be a numpy array of 1000 means.
Code explanation
import numpy as np
: Imports the numpy library asnp
.from scipy.stats import bootstrap
: Imports the bootstrap function from the SciPy stats module.data = np.array([1, 2, 3, 4, 5, 6, 7, 8])
: Creates an array of the data to be bootstrapped.bootstrap_means = bootstrap(data, 1000, np.mean)
: Calls the bootstrap function with the data, the number of bootstrap samples to generate, and the function to use to calculate the statistic (in this case, the mean).
Helpful links
More of Python Scipy
- How do I create a numpy array of zeros using Python?
- How do I use Python Numpy to read and write Excel (.xlsx) files?
- How do I use Scipy zeros in Python?
- How can I check if a certain version of Python is compatible with SciPy?
- How to use Python, XML-RPC, and NumPy together?
- How do I uninstall Python Scipy?
- How can I use Python and SciPy to perform a Short-Time Fourier Transform?
- How do I calculate a Jacobian matrix using Python and NumPy?
- How do I create a 2D array of zeros using Python and NumPy?
- How can I use RK45 with Python and SciPy?
See more codes...