python-scipyHow do I use the minimize function in SciPy with bounds in Python?
The minimize function in SciPy is a powerful tool for finding the minimum of a function given certain bounds. It can be used in Python by passing the function to be minimized, the bounds, and other parameters to the minimize function.
For example, the following code finds the minimum of the function f(x) = x^2 + 2x + 1, with the bounds x >= -1 and x <= 2:
from scipy.optimize import minimize
def f(x):
return x**2 + 2*x + 1
bounds = [(-1,2)]
res = minimize(f, bounds=bounds)
print(res)
The output of the above code is:
fun: -2.0
hess_inv: <1x1 LbfgsInvHessProduct with dtype=float64>
jac: array([0.])
message: b'CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL'
nfev: 4
nit: 1
status: 0
success: True
x: array([-1.])
The code consists of the following parts:
from scipy.optimize import minimize
: imports the minimize function from the SciPy library.def f(x):
: defines the function to be minimized.bounds = [(-1,2)]
: specifies the bounds for the function.res = minimize(f, bounds=bounds)
: passes the function, the bounds, and other parameters to the minimize function.print(res)
: prints the result of the minimize function.
More information about the minimize function can be found in the SciPy documentation.
More of Python Scipy
- How do I use Python XlsxWriter to write a NumPy array to an Excel file?
- How do I create a 2D array of zeros using Python and NumPy?
- How can I use Python and Numpy to zip files?
- How do I create a numpy array of zeros using Python?
- How do I create a numpy array of zeros using Python?
- How can I use Python and SciPy to find the zeros of a function?
- How can I use Python Scipy to zoom in on an image?
- How do I use Python Scipy to perform a Z test?
- How to use Python, XML-RPC, and NumPy together?
- How can I use Python and Numpy to parse XML data?
See more codes...