python-scipyHow do I use the minimize function in SciPy with bounds in Python?
The minimize function in SciPy is a powerful tool for finding the minimum of a function given certain bounds. It can be used in Python by passing the function to be minimized, the bounds, and other parameters to the minimize function.
For example, the following code finds the minimum of the function f(x) = x^2 + 2x + 1, with the bounds x >= -1 and x <= 2:
from scipy.optimize import minimize
def f(x):
return x**2 + 2*x + 1
bounds = [(-1,2)]
res = minimize(f, bounds=bounds)
print(res)
The output of the above code is:
fun: -2.0
hess_inv: <1x1 LbfgsInvHessProduct with dtype=float64>
jac: array([0.])
message: b'CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL'
nfev: 4
nit: 1
status: 0
success: True
x: array([-1.])
The code consists of the following parts:
from scipy.optimize import minimize: imports the minimize function from the SciPy library.def f(x):: defines the function to be minimized.bounds = [(-1,2)]: specifies the bounds for the function.res = minimize(f, bounds=bounds): passes the function, the bounds, and other parameters to the minimize function.print(res): prints the result of the minimize function.
More information about the minimize function can be found in the SciPy documentation.
More of Python Scipy
- How can I use Python Numpy to select elements from an array based on multiple conditions?
- How do I create a 2D array of zeros using Python and NumPy?
- How do I create a zero matrix using Python and Numpy?
- How do I use the scipy ttest_ind function in Python?
- How can I use Python and SciPy to generate a Voronoi diagram?
- How do I calculate variance using Python and SciPy?
- How do I create a numpy array of zeros using Python?
- How can I use Python and SciPy to find the zeros of a function?
- How to use Python, XML-RPC, and NumPy together?
- How do I use Python Numpy to read and write Excel (.xlsx) files?
See more codes...