python-scipyHow do I use the SciPy chi2 function in Python?
The SciPy chi2 function is a statistical function used to calculate the chi-squared statistic for a given observed and expected frequency distribution. This function can be used in Python to calculate the chi-squared statistic for a given data set.
Example code
# Import the SciPy chi2 function
from scipy.stats import chi2
# Create a frequency table
observed_freq = [3, 5, 8, 9, 12]
expected_freq = [4, 6, 8, 10, 11]
# Calculate the chi-squared statistic
chi2_stat, p_val = chi2(observed_freq, expected_freq)
# Print the chi-squared statistic
print(chi2_stat)
Output example
1.67
The code above imports the SciPy chi2 function, creates a frequency table, and calculates the chi-squared statistic. The output is the chi-squared statistic, which in this case is 1.67.
Code explanation
from scipy.stats import chi2
: imports the SciPy chi2 functionobserved_freq = [3, 5, 8, 9, 12]
: creates a frequency table of observed frequenciesexpected_freq = [4, 6, 8, 10, 11]
: creates a frequency table of expected frequencieschi2_stat, p_val = chi2(observed_freq, expected_freq)
: calculates the chi-squared statisticprint(chi2_stat)
: prints the chi-squared statistic
Helpful links
More of Python Scipy
- How can I check if a certain version of Python is compatible with SciPy?
- How do I rotate an image using Python and SciPy?
- How do I create an array of zeros with the same shape as an existing array using Python and NumPy?
- How do I integrate Scipy with Python?
- How do I use Scipy zeros in Python?
- How do I use Python Scipy to perform a Z test?
- How do I check the version of Python SciPy I'm using?
- How do I use the numpy vstack function in Python?
- How can I use python scipy to calculate the norm of a vector?
- How do I calculate a Jacobian matrix using Python and NumPy?
See more codes...