python-tensorflowHow can I create a neural network using Python and TensorFlow?
Creating a neural network using Python and TensorFlow is relatively simple. The following example code block shows how to create a basic neural network with one hidden layer of 10 neurons:
import tensorflow as tf
# define the number of neurons in each layer
n_inputs = 784
n_hidden1 = 10
n_outputs = 10
# define the placeholders for the inputs
X = tf.placeholder(tf.float32, shape=(None, n_inputs), name="X")
y = tf.placeholder(tf.int64, shape=(None), name="y")
# define the layers of the neural network
hidden1 = tf.layers.dense(X, n_hidden1, name="hidden1", activation=tf.nn.relu)
logits = tf.layers.dense(hidden1, n_outputs, name="outputs")
# define the cost function
xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits)
cost = tf.reduce_mean(xentropy, name="cost")
# define the optimizer
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01)
training_op = optimizer.minimize(cost)
# define the accuracy function
correct = tf.nn.in_top_k(logits, y, 1)
accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
# initialize all variables
init = tf.global_variables_initializer()
This code block creates a neural network with 784 inputs, 10 neurons in the hidden layer, and 10 outputs. It also defines the placeholders for the inputs, the layers of the neural network, the cost function, the optimizer, and the accuracy function. Finally, it initializes all the variables.
Code explanation
import tensorflow as tf
: imports the TensorFlow library.n_inputs = 784
: sets the number of inputs to 784.n_hidden1 = 10
: sets the number of neurons in the hidden layer to 10.n_outputs = 10
: sets the number of outputs to 10.X = tf.placeholder(tf.float32, shape=(None, n_inputs), name="X")
: creates a placeholder for the inputs.y = tf.placeholder(tf.int64, shape=(None), name="y")
: creates a placeholder for the outputs.hidden1 = tf.layers.dense(X, n_hidden1, name="hidden1", activation=tf.nn.relu)
: creates the hidden layer with 10 neurons and a ReLU activation function.logits = tf.layers.dense(hidden1, n_outputs, name="outputs")
: creates the output layer.xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits)
: defines the cost function.cost = tf.reduce_mean(xentropy, name="cost")
: calculates the mean cost.optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01)
: creates the optimizer.training_op = optimizer.minimize(cost)
: defines the training operation.correct = tf.nn.in_top_k(logits, y, 1)
: defines the accuracy function.accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
: calculates the mean accuracy.init = tf.global_variables_initializer()
: initializes all the variables.
Helpful links
More of Python Tensorflow
- How can I check the compatibility of different versions of Python and TensorFlow?
- How can I use Python and TensorFlow to create an XOR gate?
- How can I resolve a TensorFlow Graph Execution Error caused by an unimplemented error?
- How do I uninstall Python TensorFlow?
- How do I resolve a SymbolAlreadyExposedError when the symbol "zeros" is already exposed as () in TensorFlow Python util tf_export?
- How can I use Python and TensorFlow to handle illegal hardware instructions in Zsh?
- ¿Cómo implementar reconocimiento facial con TensorFlow y Python?
- How can I use YOLOv3 with Python and TensorFlow?
- How can I use TensorFlow Lite with XNNPACK in Python?
- How can I use Python TensorFlow with a GPU?
See more codes...