python-tensorflowHow can I use GPU support with Python TensorFlow?
Using GPU support with Python TensorFlow requires a few steps:
- Install the GPU version of TensorFlow:
pip install tensorflow-gpu
- Configure your system for GPU support:
- Install the appropriate NVIDIA CUDA and cuDNN libraries for your system
- Set the environment variables
CUDA_HOME
andCUDA_VISIBLE_DEVICES
- Check if your system is using the GPU:
from tensorflow.python.client import device_lib print(device_lib.list_local_devices())
Output:
[name: "/device:CPU:0" device_type: "CPU" memory_limit: 268435456 locality { } incarnation: 15431938337512452352, name: "/device:GPU:0" device_type: "GPU" memory_limit: 4930941747 locality { bus_id: 1 links { } } incarnation: 12773568187716142553 physical_device_desc: "device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1"]
- Use the GPU for training:
with tf.device('/device:GPU:0'): # Your code here
Helpful links
More of Python Tensorflow
- How do I resolve a SymbolAlreadyExposedError when the symbol "zeros" is already exposed as () in TensorFlow Python util tf_export?
- How can I check the compatibility of different versions of Python and TensorFlow?
- How can I determine the best Python version to use for TensorFlow?
- How can I use Python and TensorFlow to handle illegal hardware instructions in Zsh?
- ¿Cómo implementar reconocimiento facial con TensorFlow y Python?
- How do I use the Xception model in TensorFlow with Python?
- How can I use TensorFlow 2.x to optimize my Python code?
- How do I use Python TensorFlow 1.x?
- How can I use Python and TensorFlow to implement YOLO object detection?
- How can I use Python and TensorFlow to implement YOLOv4?
See more codes...