python-tensorflowHow can I use TensorFlow Lite with XNNPACK in Python?
TensorFlow Lite (TFLite) is a lightweight version of TensorFlow designed for mobile and embedded devices. It can be used with XNNPACK to improve the performance of machine learning models on mobile and embedded devices.
To use TensorFlow Lite with XNNPACK in Python, you will need to install the TensorFlow Lite package and the XNNPACK package. You can then use the TFLite Python API to create a model and use the XNNPACK delegate to optimize the model for mobile and embedded devices.
Example code
import tensorflow as tf
import tflite_runtime.interpreter as tflite
# Create a TensorFlow Lite model
model = tf.keras.models.Sequential([
tf.keras.layers.Dense(10, input_shape=(3,))
])
# Convert the model to TensorFlow Lite
converter = tf.lite.TFLiteConverter.from_keras_model(model)
# Enable XNNPACK delegate for TensorFlow Lite
converter.experimental_new_converter = True
converter.experimental_new_converter_funcs = [tflite.experimental_add_xnnpack_delegate]
tflite_model = converter.convert()
# Use the TensorFlow Lite model
interpreter = tflite.Interpreter(model_content=tflite_model)
interpreter.allocate_tensors()
# ...
The code above creates a TensorFlow Lite model from a Keras model and enables the XNNPACK delegate for the TensorFlow Lite model. The XNNPACK delegate will optimize the model for mobile and embedded devices.
Code explanation
import tensorflow as tf
: imports the TensorFlow packageimport tflite_runtime.interpreter as tflite
: imports the TensorFlow Lite interpretermodel = tf.keras.models.Sequential([tf.keras.layers.Dense(10, input_shape=(3,))])
: creates a Keras modelconverter = tf.lite.TFLiteConverter.from_keras_model(model)
: creates a TensorFlow Lite converter from the Keras modelconverter.experimental_new_converter = True
: enables the experimental new converterconverter.experimental_new_converter_funcs = [tflite.experimental_add_xnnpack_delegate]
: adds the XNNPACK delegate to the TensorFlow Lite convertertflite_model = converter.convert()
: converts the model to TensorFlow Liteinterpreter = tflite.Interpreter(model_content=tflite_model)
: creates a TensorFlow Lite interpreterinterpreter.allocate_tensors()
: allocates the tensors for the TensorFlow Lite interpreter
Helpful links
More of Python Tensorflow
- How do I resolve a SymbolAlreadyExposedError when the symbol "zeros" is already exposed as () in TensorFlow Python util tf_export?
- How can I use Tensorflow 1.x with Python 3.8?
- ¿Cómo implementar reconocimiento facial con TensorFlow y Python?
- How can I use Python and TensorFlow Datasets together?
- How do I check which version of TensorFlow I am using with Python?
- How can I use Python and TensorFlow to handle illegal hardware instructions in Zsh?
- How can I install and use TensorFlow on a Windows machine using Python?
- How can I use YOLOv3 with Python and TensorFlow?
- How can I use XGBoost, Python, and Tensorflow together for software development?
- How do I troubleshoot a BLAS GEMM Launch Failed error in TensorFlow Python Framework?
See more codes...