python-tensorflowHow do I convert a Python TensorFlow model to ONNX?
To convert a Python TensorFlow model to ONNX, you need to use the ONNX converter. This converter is available in the TensorFlow-ONNX repository.
To use the converter, you need to first install the necessary packages:
pip install onnx
pip install onnx-tf
Once the packages have been installed, you can use the following code to convert the model:
import onnx
import onnx_tf
onnx_model = onnx.load("model.onnx")
tf_rep = onnx_tf.backend.prepare(onnx_model)
The onnx.load
function loads the model from the file model.onnx
, and the onnx_tf.backend.prepare
function converts the model to a TensorFlow representation.
You can also use the tf2onnx package to convert the model from TensorFlow to ONNX. This package provides a command-line interface that can be used to convert the model:
python -m tf2onnx.convert --saved-model model.pb --output model.onnx
The tf2onnx.convert
command takes the model file model.pb
as input and outputs the converted model in the file model.onnx
.
Helpful links
More of Python Tensorflow
- How can I use Python and TensorFlow to handle illegal hardware instructions in Zsh?
- How do I resolve a SymbolAlreadyExposedError when the symbol "zeros" is already exposed as () in TensorFlow Python util tf_export?
- ¿Cómo implementar reconocimiento facial con TensorFlow y Python?
- How can I use TensorFlow Lite with XNNPACK in Python?
- How can I use TensorFlow with Python 3.11?
- How can I use Tensorflow 1.x with Python 3.8?
- How do I use TensorFlow 1.x with Python?
- How can I install and use TensorFlow on a Windows machine using Python?
- How do I use TensorFlow 1.15 with Python?
- How do I use the Xception model in TensorFlow with Python?
See more codes...