python-tensorflowHow do I save a TensorFlow model in Python?
Saving a TensorFlow model in Python is easy and straightforward. The following example code shows how to save a model in TensorFlow:
# Create and train a model
model = tf.keras.Sequential([
tf.keras.layers.Dense(10, activation='relu', input_shape=(4,))
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(X_train, y_train, epochs=5)
# Save the model
model.save('my_model.h5')
This will save the model as an HDF5 file called my_model.h5
. The code can be broken down into the following parts:
tf.keras.Sequential()
: This creates aSequential
model in TensorFlow.tf.keras.layers.Dense()
: This adds a densely-connected layer to the model.model.compile()
: This compiles the model with the given optimizer, loss, and metrics.model.fit()
: This fits the model to the training data.model.save()
: This saves the model as an HDF5 file.
For more information, see the TensorFlow documentation.
More of Python Tensorflow
- How do I resolve a SymbolAlreadyExposedError when the symbol "zeros" is already exposed as () in TensorFlow Python util tf_export?
- How can I use Python and TensorFlow to handle illegal hardware instructions in Zsh?
- ¿Cómo implementar reconocimiento facial con TensorFlow y Python?
- How can I use Python and TensorFlow to implement YOLO object detection?
- How can I use TensorFlow 2.x to optimize my Python code?
- How do I use the Xception model in TensorFlow with Python?
- How do I use Python TensorFlow 1.x?
- How can I use Tensorflow 1.x with Python 3.8?
- How can I use XGBoost, Python, and Tensorflow together for software development?
- How can I use Python and TensorFlow to create an XOR gate?
See more codes...