python-tensorflowHow do I use Python and TensorFlow to implement gradient descent?
Gradient descent is a technique used to minimize a cost function in machine learning. It can be used to optimize the weights and parameters of a model. In Python, TensorFlow provides an easy-to-use API for implementing gradient descent.
# import the necessary modules
import tensorflow as tf
# define the model parameters
w = tf.Variable([.3], tf.float32)
b = tf.Variable([-.3], tf.float32)
# define the inputs and outputs of the model
x = tf.placeholder(tf.float32)
linear_model = w * x + b
y = tf.placeholder(tf.float32)
# define the cost/loss function
loss = tf.reduce_sum(tf.square(linear_model - y))
# define the optimizer
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)
# initialize the variables
init = tf.global_variables_initializer()
# define the training data
x_train = [1, 2, 3, 4]
y_train = [0, -1, -2, -3]
# run the training loop
with tf.Session() as sess:
sess.run(init)
for i in range(1000):
sess.run(train, {x: x_train, y: y_train})
# evaluate training accuracy
curr_w, curr_b, curr_loss = sess.run([w, b, loss], {x: x_train, y: y_train})
print("w: %s b: %s loss: %s"%(curr_w, curr_b, curr_loss))
Output example
w: [-0.9999969] b: [0.9999908] loss: 5.6999738e-11
The code above implements gradient descent in TensorFlow. It first imports the necessary modules (1). It then defines the model parameters (2) and the inputs and outputs of the model (3). The cost/loss function is then defined (4). An optimizer is then defined (5) and the variables are initialized (6). The training data is then defined (7) and the training loop is run (8). Finally, the training accuracy is evaluated (9).
- Import modules:
import tensorflow as tf
- Define model parameters:
w = tf.Variable([.3], tf.float32)
,b = tf.Variable([-.3], tf.float32)
- Define inputs and outputs:
x = tf.placeholder(tf.float32)
,linear_model = w * x + b
,y = tf.placeholder(tf.float32)
- Define cost/loss function:
loss = tf.reduce_sum(tf.square(linear_model - y))
- Define optimizer:
optimizer = tf.train.GradientDescentOptimizer(0.01)
,train = optimizer.minimize(loss)
- Initialize variables:
init = tf.global_variables_initializer()
- Define training data:
x_train = [1, 2, 3, 4]
,y_train = [0, -1, -2, -3]
- Run training loop:
with tf.Session() as sess: sess.run(init) for i in range(1000): sess.run(train, {x: x_train, y: y_train})
- Evaluate training accuracy:
curr_w, curr_b, curr_loss = sess.run([w, b, loss], {x: x_train, y: y_train})
Helpful links
More of Python Tensorflow
- How can I use Python and TensorFlow to create an XOR gate?
- How can I check the compatibility of different versions of Python and TensorFlow?
- How can I use TensorFlow Lite with XNNPACK in Python?
- How do I uninstall Python TensorFlow?
- How do I resolve a SymbolAlreadyExposedError when the symbol "zeros" is already exposed as () in TensorFlow Python util tf_export?
- How can I use Python and TensorFlow to handle illegal hardware instructions in Zsh?
- How can I use YOLOv3 with Python and TensorFlow?
- How do I check the version of Python Tensorflow I'm using?
- How do I check which version of TensorFlow I am using with Python?
- ¿Cómo implementar reconocimiento facial con TensorFlow y Python?
See more codes...