python-tensorflowHow do I use Python TensorFlow.Keras.Models to create a machine learning model?
Python TensorFlow.Keras.Models can be used to create a machine learning model. To do this, the following steps can be taken:
- First, import the relevant libraries:
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
- Then, create the model structure by defining the layers:
model = Sequential()
model.add(Dense(units=64, activation='relu', input_dim=100))
model.add(Dense(units=10, activation='softmax'))
- Compile the model, specifying the optimizer, loss function and metrics:
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
- Fit the model to the training data for a specified number of epochs:
model.fit(train_data, train_targets, epochs=5)
- Evaluate the model on the test data:
test_loss, test_acc = model.evaluate(test_data, test_targets)
- Make predictions using the model:
predictions = model.predict(test_data)
- Finally, save the model for future use:
model.save('my_model.h5')
Helpful links
More of Python Tensorflow
- ¿Cómo implementar reconocimiento facial con TensorFlow y Python?
- How do I use TensorFlow in Python?
- How can I check the compatibility of different versions of Python and TensorFlow?
- How do I uninstall Python TensorFlow?
- How can I use YOLOv3 with Python and TensorFlow?
- How do I check which version of TensorFlow I am using with Python?
- How can I use Python and TensorFlow to handle illegal hardware instructions in Zsh?
- How do I resolve a SymbolAlreadyExposedError when the symbol "zeros" is already exposed as () in TensorFlow Python util tf_export?
- How do I use the set_random_seed function in Python TensorFlow?
- How do I use the Xception model in TensorFlow with Python?
See more codes...