python-tensorflowHow do I use the module_util module from TensorFlow in Python?
The module_util module from TensorFlow in Python allows you to easily manage the modules in your TensorFlow program. It provides a number of useful functions that can make it easier to work with modules.
For example, to get a list of all the modules in your program, you can use the list_modules() function:
import tensorflow as tf
import module_util
modules = module_util.list_modules()
print(modules)
This will output a list of all the modules in your program:
['tensorflow', 'module_util', ...]
You can also use the load_module() function to load a specific module into your program:
import module_util
my_module = module_util.load_module('my_module')
The module_util module also provides functions to check if a module has been loaded, reload a module, and unload a module.
For more information on the module_util module, see the official TensorFlow documentation.
More of Python Tensorflow
- How can I use Python and TensorFlow to handle illegal hardware instructions in Zsh?
 - How can I troubleshoot a TensorFlow Python Framework ResourceExhaustedError graph execution error?
 - How can I use TensorFlow Python Data Ops BatchDataset?
 - How do I resolve a SymbolAlreadyExposedError when the symbol "zeros" is already exposed as () in TensorFlow Python util tf_export?
 - How can I use Python and TensorFlow to implement YOLO object detection?
 - ¿Cómo implementar reconocimiento facial con TensorFlow y Python?
 - How can I use YOLOv3 with Python and TensorFlow?
 - How can I use TensorFlow Lite with XNNPACK in Python?
 - How can I use TensorFlow 2.x to optimize my Python code?
 - How do I use TensorFlow 1.x with Python?
 
See more codes...