python-tensorflowHow do I use the Python TensorFlow Lite Interpreter?
The Python TensorFlow Lite Interpreter is a tool for running TensorFlow Lite models on mobile, embedded, and IoT devices. It enables low-latency inference of on-device machine learning models with a small binary size and fast performance.
To use the Python TensorFlow Lite Interpreter, you first need to install the TensorFlow Lite package:
pip install tensorflow-lite
Then, you can use the Interpreter class to run inference on a TensorFlow Lite model. For example, to load and run a model on an image:
# Load TFLite model and allocate tensors
interpreter = tf.lite.Interpreter(model_path="model.tflite")
interpreter.allocate_tensors()
# Get input and output tensors
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
# Load image and resize it to input shape
image = Image.open("image.jpg")
image_resized = image.resize(input_details[0]['shape'][1:3])
# Set input tensor
interpreter.set_tensor(input_details[0]['index'], image_resized)
# Run inference
interpreter.invoke()
# Get output
output_data = interpreter.get_tensor(output_details[0]['index'])
The above code will load and run a TensorFlow Lite model on an image, and the output data will be stored in the output_data
variable.
The following list contains the main parts of the code:
- Install TensorFlow Lite package:
pip install tensorflow-lite
- Create Interpreter object:
interpreter = tf.lite.Interpreter(model_path="model.tflite")
- Allocate tensors:
interpreter.allocate_tensors()
- Get input and output tensors:
input_details = interpreter.get_input_details()
andoutput_details = interpreter.get_output_details()
- Load image and resize it to input shape:
image_resized = image.resize(input_details[0]['shape'][1:3])
- Set input tensor:
interpreter.set_tensor(input_details[0]['index'], image_resized)
- Run inference:
interpreter.invoke()
- Get output:
output_data = interpreter.get_tensor(output_details[0]['index'])
For more information, please refer to the TensorFlow Lite Python API documentation.
More of Python Tensorflow
- How do I resolve a SymbolAlreadyExposedError when the symbol "zeros" is already exposed as () in TensorFlow Python util tf_export?
- How can I use TensorFlow 2.x to optimize my Python code?
- How can I use Python TensorFlow in W3Schools?
- How can I install and use TensorFlow on a Windows machine using Python?
- How can I check the compatibility of different versions of Python and TensorFlow?
- ¿Cómo implementar reconocimiento facial con TensorFlow y Python?
- How can I use Python and TensorFlow to handle illegal hardware instructions in Zsh?
- How can I use TensorFlow Python Data Ops BatchDataset?
- How can I use Tensorflow 1.x with Python 3.8?
- How do I use the Xception model in TensorFlow with Python?
See more codes...