google-big-queryHow can I set up high availability for Google BigQuery?
High availability for Google BigQuery can be set up with the following steps:
-
Create a regional or multi-regional Cloud Storage bucket to store your query results.
-
Create a BigQuery job to store query results in the Cloud Storage bucket.
bq query --destination_table=<project>.<dataset>.<table> --use_legacy_sql=false 'SELECT * FROM <table>'
- Configure the BigQuery job to run periodically.
bq query --destination_table=<project>.<dataset>.<table> --use_legacy_sql=false --schedule='every 24 hours' 'SELECT * FROM <table>'
- Create a Cloud Function to monitor the Cloud Storage bucket for new query results.
def monitor_bucket(data, context):
# Check for new query results
# Process query results
- Create a Cloud Scheduler to trigger the Cloud Function periodically.
gcloud scheduler jobs create http <job-name> --schedule="0 0 * * *" --uri=<cloud-function-url>
-
Monitor the Cloud Function logs to ensure the query results are processed correctly.
-
Monitor the BigQuery job to ensure it is running as expected.
Helpful links
More of Google Big Query
- How do I start using Google Big Query?
- How can I create a Google BigQuery table?
- ¿Cuáles son las ventajas y desventajas de usar Google BigQuery?
- How do I use Google Big Query with Excel?
- How can I use the CASE WHEN statement in Google Big Query?
- How can I use Google Big Query with Udemy?
- How can I use Google Big Query to count the number of zeros in a given dataset?
- How can I get started with Google BigQuery training?
- How do I use Google Big Query SQL for software development?
- How can I use Google Big Query with PHP?
See more codes...