python-kerasHow can I use Python with Keras to build a deep learning model?
Python with Keras can be used to build a deep learning model by following these steps:
- Import the required libraries:
import numpy as np
from keras.models import Sequential
from keras.layers import Dense
- Create the model:
model = Sequential()
model.add(Dense(units=64, activation='relu', input_dim=100))
model.add(Dense(units=10, activation='softmax'))
- Compile the model:
model.compile(loss='categorical_crossentropy',
optimizer='sgd',
metrics=['accuracy'])
- Train the model:
model.fit(x_train, y_train, epochs=5, batch_size=32)
- Evaluate the model:
loss_and_metrics = model.evaluate(x_test, y_test, batch_size=128)
- Make predictions with the model:
classes = model.predict(x_test, batch_size=128)
- Save the model:
model.save('my_model.h5')
Helpful links
More of Python Keras
- How do I use zero padding in Python Keras?
- How do I use Python Keras to zip a file?
- How do I use Python Keras to create a Zoom application?
- How can I use batch normalization in Python Keras?
- How can I use Python Keras to create a neural network with zero hidden layers?
- How can I use YOLO with Python and Keras?
- How do I use validation_data when creating a Keras model in Python?
- How can I use XGBoost, Python and Keras together to build a machine learning model?
- How can I use word2vec and Keras to develop a machine learning model in Python?
- How can I install the python module tensorflow.keras in R?
See more codes...