python-kerasHow can I use the Python Keras Tokenizer to preprocess text data?
The Python Keras Tokenizer is a text preprocessing tool that can be used to prepare text data for use in neural network models.
To use the Tokenizer, first import the Tokenizer class from the Keras library:
from keras.preprocessing.text import Tokenizer
Then create an instance of the Tokenizer class:
tokenizer = Tokenizer()
Next, fit the Tokenizer to the text data:
tokenizer.fit_on_texts(text_data)
Where text_data is a list of strings containing the text data to be tokenized.
The Tokenizer can then be used to transform the text data into numerical vectors:
x = tokenizer.texts_to_sequences(text_data)
Where x is a list of numerical vectors, each representing a single text data point.
Finally, the numerical vectors can be padded to a uniform length, if necessary:
from keras.preprocessing.sequence import pad_sequences
x = pad_sequences(x)
Where x is now a 2D array of numerical vectors, all of uniform length.
Helpful links
More of Python Keras
- How do I install the Python Keras .whl file?
- How can I improve the validation accuracy of my Keras model using Python?
- How can I enable verbose mode when using Python Keras?
- How can I use Python Keras to create a neural network with zero hidden layers?
- How do I use Python's tf.keras.utils.get_file to retrieve a file?
- How do I use the to_categorical function in Python Keras?
- How can I save a trained model in Python using Keras?
- How can I use Python and Keras to perform Principal Component Analysis?
- How do I use the pad_sequences function in Python Keras?
- How do I use zero padding in Python Keras?
See more codes...