python-kerasHow do I evaluate a model using Python and Keras?
To evaluate a model using Python and Keras, the following steps should be taken:
- Compile the model using the
compile()
method. This should include a loss function, an optimizer, and any metrics that should be included in the evaluation.
model.compile(loss='mean_squared_error', optimizer='sgd', metrics=['accuracy'])
- Fit the model to the training data using the
fit()
method. This will train the model on the training data.
model.fit(X_train, y_train, batch_size=32, epochs=10, verbose=1)
- Evaluate the model on the test data using the
evaluate()
method. This will return the loss and any metrics specified in thecompile()
step.
loss, accuracy = model.evaluate(X_test, y_test, verbose=0)
- Use the
predict()
method to generate predictions on new data.
predictions = model.predict(X_new)
For more information, see the Keras documentation.
More of Python Keras
- How do I use Python Keras to zip a file?
- How do I use validation_data when creating a Keras model in Python?
- How do I check which version of Keras I am using in Python?
- How can I use Python Keras to develop a reinforcement learning model?
- How can I use XGBoost, Python and Keras together to build a machine learning model?
- How do I install the Python Keras .whl file?
- How do I use Python's tf.keras.utils.get_file to retrieve a file?
- How do I save weights in a Python Keras model?
- How do I use keras.utils.to_categorical in Python?
- How can I use Python and Keras together?
See more codes...