python-kerasHow do I use Python Keras to create a Recurrent Neural Network (RNN) example?
A Recurrent Neural Network (RNN) example in Python Keras can be created by following these steps:
- Import the necessary libraries, such as
keras
andnumpy
:
import keras
import numpy as np
- Define the model:
model = keras.Sequential()
model.add(keras.layers.Embedding(input_dim=1000, output_dim=64))
model.add(keras.layers.LSTM(64))
model.add(keras.layers.Dense(1, activation='sigmoid'))
- Compile the model:
model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['acc'])
- Generate dummy training data:
x_train = np.random.random((1000, 10))
y_train = np.random.randint(2, size=(1000, 1))
- Train the model:
model.fit(x_train, y_train, epochs=10, batch_size=32)
- Generate dummy test data:
x_test = np.random.random((100, 10))
y_test = np.random.randint(2, size=(100, 1))
- Evaluate the model:
model.evaluate(x_test, y_test)
The output of the last command should be a list of two numbers, the first being the loss and the second being the accuracy.
Helpful links
More of Python Keras
- How to load a model in Python Keras?
- How do I set the input shape when using Keras with Python?
- How can I use Python and Keras to forecast time series data?
- How do I use validation_data when creating a Keras model in Python?
- How do I use Python Keras to zip a file?
- How do I check which version of Keras I am using in Python?
- How can I use Python Keras to develop a reinforcement learning model?
- How do I use Python's tf.keras.utils.get_file to retrieve a file?
- How can I split my data into train and test sets using Python and Keras?
- How can I use XGBoost, Python and Keras together to build a machine learning model?
See more codes...