9951 explained code solutions for 126 technologies


python-kerasHow do I use the Keras Conv2D function in Python?


The Keras Conv2D function is a 2D convolution layer that is used to process 2D inputs such as images. It is a part of the Keras deep learning library for Python.

The syntax for the Keras Conv2D function is as follows:

keras.layers.Conv2D(filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None)

The parameters for the Keras Conv2D function are:

  • filters: The number of filters used in the convolution operation.
  • kernel_size: An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window.
  • strides: An integer or tuple/list of 2 integers, specifying the strides of the convolution along the height and width.
  • padding: One of 'valid' or 'same', specifying the type of padding algorithm to use.
  • data_format: A string, one of 'channels_last' (default) or 'channels_first'.
  • dilation_rate: An integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution.
  • activation: Activation function to use.
  • use_bias: Boolean, whether the layer uses a bias vector.
  • kernel_initializer: Initializer for the kernel weights matrix.
  • bias_initializer: Initializer for the bias vector.
  • kernel_regularizer: Regularizer function applied to the kernel weights matrix.
  • bias_regularizer: Regularizer function applied to the bias vector.
  • activity_regularizer: Regularizer function applied to the output of the layer.
  • kernel_constraint: Constraint function applied to the kernel weights matrix.
  • bias_constraint: Constraint function applied to the bias vector.

The following example code shows how to use the Keras Conv2D function to create a convolutional layer with 32 filters and a 3x3 kernel size:

from keras.layers import Conv2D

conv_layer = Conv2D(32, (3,3))

For more information about the Keras Conv2D function, please refer to the Keras documentation.

Edit this code on GitHub