9951 explained code solutions for 126 technologies


python-kerasHow do I use the Python Keras Embedding Layer?


The Keras Embedding Layer is a powerful tool for representing text data in a numerical format. It can be used to create dense vectors for words, phrases, and sentences, which can then be used in a variety of machine learning tasks.

To use the Keras Embedding Layer, you first need to define the layer in your model:

from keras.layers import Embedding

embedding_layer = Embedding(input_dim=vocab_size, output_dim=embedding_dim, input_length=max_length)

In this example, vocab_size is the size of your vocabulary, embedding_dim is the size of the vector you want to create for each word, and max_length is the length of the longest sentence in your dataset.

Next, you need to add the layer to your model:

model.add(embedding_layer)

Finally, you can compile and fit your model:

model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
model.fit(X_train, y_train, epochs=10, batch_size=32)

Parts of code:

  • from keras.layers import Embedding: imports the Embedding Layer from Keras.
  • embedding_layer = Embedding(input_dim=vocab_size, output_dim=embedding_dim, input_length=max_length): defines the Embedding Layer with the specified input and output dimensions.
  • model.add(embedding_layer): adds the Embedding Layer to the model.
  • model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']): compiles the model.
  • model.fit(X_train, y_train, epochs=10, batch_size=32): fits the model with the specified training data.

Helpful links

Edit this code on GitHub