9951 explained code solutions for 126 technologies


python-pytorchHow can I use Python and PyTorch to query data?


Python and PyTorch can be used to query data in a number of ways.

One approach is to use the torch.utils.data.DataLoader class. This class provides an iterator over a dataset, allowing you to query data in batches.

The following example code shows how to use DataLoader to query a dataset of images:

import torch
from torchvision import datasets

# Load the MNIST dataset
dataset = datasets.MNIST('data/', train=True, download=True)

# Create a DataLoader instance
data_loader = torch.utils.data.DataLoader(dataset, batch_size=32, shuffle=True)

# Iterate over the data
for images, labels in data_loader:
    # Process the data...
    print(images.shape, labels.shape)

# Output: torch.Size([32, 1, 28, 28]) torch.Size([32])

Another approach is to use the torch.utils.data.Dataset class. This class provides an interface for customizing the way data is queried from a dataset.

The following example code shows how to use Dataset to query a dataset of images:

import torch
from torchvision import datasets

# Create a custom Dataset class
class MyDataset(torch.utils.data.Dataset):
    def __init__(self):
        # Load the data...
        self.data = datasets.MNIST('data/', train=True, download=True)

    def __len__(self):
        return len(self.data)

    def __getitem__(self, index):
        # Retrieve an image and its corresponding label
        image, label = self.data[index]

        # Pre-process the data...
        return image, label

# Create a Dataset instance
dataset = MyDataset()

# Iterate over the data
for image, label in dataset:
    # Process the data...
    print(image.shape, label)

# Output: torch.Size([1, 28, 28]) 5

The DataLoader and Dataset classes provide powerful tools for querying data with Python and PyTorch.

List of Code Parts

  1. torch.utils.data.DataLoader: Class that provides an iterator over a dataset, allowing you to query data in batches.
  2. datasets.MNIST: Method used to load the MNIST dataset.
  3. DataLoader constructor: Used to create a DataLoader instance.
  4. for loop: Used to iterate over the data.
  5. torch.utils.data.Dataset: Class that provides an interface for customizing the way data is queried from a dataset.
  6. MyDataset: Custom Dataset class created to query a dataset of images.
  7. MyDataset constructor: Used to create a MyDataset instance.
  8. for loop: Used to iterate over the data.

List of Relevant Links

Edit this code on GitHub