python-scikit-learnMSE for linear regression
import numpy as np
from sklearn import datasets, linear_model, model_selection, metrics
X, y = datasets.load_diabetes(return_X_y=True)
X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y)
model = linear_model.LinearRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
mse = metrics.mean_squared_error(y_test, y_pred)ctrl + c| from sklearn importimport module from scikit-learn | import numpyimport Numpy module | 
| datasets.load_diabetesloads sample diabetes database | model_selection.train_test_splitsplits given  | 
| linear_model.LinearRegressioninitialize linear regression model | .fit(train model with a given features and target variable dataset | 
| .predict(predict target variable based on given features dataset | .mean_squared_error(calculates MSE for given test and predicted values | 
Usage example
import numpy as np
from sklearn import datasets, linear_model, model_selection, metrics
X, y = datasets.load_diabetes(return_X_y=True)
X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y)
model = linear_model.LinearRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
mse = metrics.mean_squared_error(y_test, y_pred)
print(mse)output
2559.764355320905
Related
More of Python Scikit Learn
- Grid search CV example
- Simple imputer example
- Use imputer for one column only
- Feature importance example
- Feature selection using KBest and chi2
- How to disable cross validation in grid search CV
- Using OneClassSVM for outliers detection example
- How to get best parameters from grid search CV
- Using quantile regression
- TSNe embedding example
See more codes...