9951 explained code solutions for 126 technologies


python-scikit-learnUsing Gradient boosting classifier example


from sklearn import datasets, ensemble, model_selection

X, y = datasets.load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y)

model = ensemble.GradientBoostingClassifier()
model.fit(X_train, y_train)

score = model.score(X_test, y_test)ctrl + c
from sklearn import

import module from scikit-learn

load_iris

loads Iris dataset

model_selection.train_test_split

splits given X and y datasets to test (25% of values by default) and train (75% of values by default) subsets

.GradientBoostingClassifier(

creates gradient boosting classification model

.fit(

train model with a given features and target variable dataset

.score(

returns model accuracy score


Usage example

from sklearn import datasets, ensemble, model_selection

X, y = datasets.load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y)

model = ensemble.GradientBoostingClassifier()
model.fit(X_train, y_train)

print(model.score(X_test, y_test))
output
0.9473684210526315