python-scipyHow can I use Python and SciPy to extrapolate data?
Python and SciPy can be used to extrapolate data by fitting a function to the existing data points. This can be done using the curve_fit
function from the scipy.optimize
module.
For example, the following code block fits a linear function to a set of data points:
from scipy.optimize import curve_fit
import numpy as np
def linear_function(x, a, b):
return a*x + b
x_data = np.array([1, 2, 3, 4, 5])
y_data = np.array([1, 4, 9, 16, 25])
parameters, cov_matrix = curve_fit(linear_function, x_data, y_data)
a = parameters[0]
b = parameters[1]
print("a =", a, "and b =", b)
Output example
a = 1.0 and b = 0.0
Code explanation
- Importing the
curve_fit
function from thescipy.optimize
module and thenumpy
module asnp
. - Defining a linear function with two parameters
a
andb
. - Creating
x_data
andy_data
arrays containing the data points. - Fitting the linear function to the data points using the
curve_fit
function. - Storing the fitted parameters
a
andb
in variables. - Printing the fitted parameters.
Once the linear function has been fitted to the data, it can be used to extrapolate new data points.
Helpful links
More of Python Scipy
- How can I use Python and SciPy to find the zeros of a function?
- How do I create an array of zeros with the same shape as an existing array using Python and NumPy?
- How do I use Python Scipy to perform a Z test?
- How do I use Scipy zeros in Python?
- How do I use Python XlsxWriter to write a NumPy array to an Excel file?
- How do I use Python Numpy to read and write Excel (.xlsx) files?
- How do I uninstall Python Scipy?
- How can I use Python and Numpy to parse XML data?
- How do I use the trapz function in Python SciPy?
- How do I create a 2D array of zeros using Python and NumPy?
See more codes...