9951 explained code solutions for 126 technologies


python-scipyHow can I use Python and SciPy to extrapolate data?


Python and SciPy can be used to extrapolate data by fitting a function to the existing data points. This can be done using the curve_fit function from the scipy.optimize module.

For example, the following code block fits a linear function to a set of data points:

from scipy.optimize import curve_fit
import numpy as np

def linear_function(x, a, b):
    return a*x + b

x_data = np.array([1, 2, 3, 4, 5])
y_data = np.array([1, 4, 9, 16, 25])

parameters, cov_matrix = curve_fit(linear_function, x_data, y_data)

a = parameters[0]
b = parameters[1]

print("a =", a, "and b =", b)

Output example

a = 1.0 and b = 0.0

Code explanation

  1. Importing the curve_fit function from the scipy.optimize module and the numpy module as np.
  2. Defining a linear function with two parameters a and b.
  3. Creating x_data and y_data arrays containing the data points.
  4. Fitting the linear function to the data points using the curve_fit function.
  5. Storing the fitted parameters a and b in variables.
  6. Printing the fitted parameters.

Once the linear function has been fitted to the data, it can be used to extrapolate new data points.

Helpful links

Edit this code on GitHub