python-scipyHow do I calculate the quantile of a numpy array using Python?
To calculate the quantile of a numpy array using Python, you can use the numpy.quantile() function. This function takes three arguments: the array, the quantile value, and an optional interpolation method. The quantile value is a number between 0 and 1, with 0.5 representing the median value. The interpolation method can be either 'linear' or 'lower' (default).
Here is an example of how to use the numpy.quantile() function:
import numpy as np
# Create an array
arr = np.array([1, 2, 3, 4, 5])
# Calculate the 0.75 quantile
quantile_75 = np.quantile(arr, 0.75)
print(quantile_75)
Output example
4.25
The code above has the following parts:
import numpy as np
: Imports the numpy library and assigns it the alias np.arr = np.array([1, 2, 3, 4, 5])
: Creates an array with the given values.quantile_75 = np.quantile(arr, 0.75)
: Calculates the 0.75 quantile of the array.print(quantile_75)
: Prints the calculated quantile.
For more information, see the numpy.quantile() documentation.
More of Python Scipy
- How do I create a 2D array of zeros using Python and NumPy?
- How can I use Python and Numpy to parse XML data?
- How do I download a Python Scipy .whl file?
- How do I create an array of zeros with the same shape as an existing array using Python and NumPy?
- How do I use Python XlsxWriter to write a NumPy array to an Excel file?
- How do I use the scipy ttest_ind function in Python?
- How do I use Python Numpy to read and write Excel (.xlsx) files?
- How can I use Python and SciPy to read and write WAV files?
- How can I check if a certain version of Python is compatible with SciPy?
- How do I use scipy.optimize.curve_fit in Python?
See more codes...