python-scipyHow do I use scipy.optimize.curve_fit in Python?
scipy.optimize.curve_fit is a function in the SciPy library of Python used to fit a curve of the form f(x, *params) to data. It finds the parameters of the curve that best fit the given data points.
from scipy.optimize import curve_fit
import numpy as np
def func(x, a, b):
return a*x + b
x_data = np.array([0, 1, 2, 3, 4, 5])
y_data = np.array([1, 3, 5, 7, 9, 11])
popt, pcov = curve_fit(func, x_data, y_data)
print(popt)
Output example
[2. 1.]
The code above uses curve_fit to fit a linear function f(x) = a*x + b to the given data points. The func function is defined as the model to fit the data to. The x_data and y_data are the x-coordinates and y-coordinates of the data points. The curve_fit function returns two values, popt and pcov which are the optimal parameters and the covariance matrix of the parameters respectively. In this case, the optimal parameters are a = 2 and b = 1.
Code explanation
from scipy.optimize import curve_fit: imports thecurve_fitfunction from the SciPy libraryimport numpy as np: imports the NumPy library for array manipulationdef func(x, a, b): defines the model function to fit the data tox_dataandy_data: the x-coordinates and y-coordinates of the data pointspopt, pcov = curve_fit(func, x_data, y_data): calls thecurve_fitfunction to fit the data to the model functionprint(popt): prints the optimal parameters
Helpful links
More of Python Scipy
- How can I use Python Scipy to zoom in on an image?
- How do I calculate the variance with Python and NumPy?
- How do I uninstall Python Scipy?
- How can I use Python and SciPy to apply a Hann window to a signal?
- How do I create a 2D array of zeros using Python and NumPy?
- How can I use Python and Numpy to zip files?
- How can I use Python and SciPy to find the zeros of a function?
- How do I use Scipy zeros in Python?
- How do I create a zero matrix using Python and Numpy?
- How do I use Python Numpy to read and write Excel (.xlsx) files?
See more codes...