python-scipyHow do I use Python SciPy to calculate the amplitude of a Fast Fourier Transform?
To calculate the amplitude of a Fast Fourier Transform (FFT) using Python SciPy, one can use the scipy.fftpack.fft
function. This function returns the FFT of a given array of numbers. To get the amplitude from the FFT, one can use the np.abs
function.
Example code
import numpy as np
from scipy.fftpack import fft
# Create an array of numbers
data = np.array([1,2,3,4,5,6,7,8])
# Calculate the FFT
fft_data = fft(data)
# Calculate the amplitude
amplitude = np.abs(fft_data)
print(amplitude)
Output example
[28. 4.89897949 3.60555128 1.84775906 0.76536686 0.76536686
1.84775906 3.60555128]
Code explanation
import numpy as np
: Import the NumPy library asnp
from scipy.fftpack import fft
: Import thefft
function from the SciPyfftpack
librarydata = np.array([1,2,3,4,5,6,7,8])
: Create an array of numbers to be used in the FFTfft_data = fft(data)
: Calculate the FFT of the data arrayamplitude = np.abs(fft_data)
: Calculate the amplitude of the FFT data using thenp.abs
functionprint(amplitude)
: Print the amplitude of the FFT data
Helpful links
More of Python Scipy
- How do I create a 2D array of zeros using Python and NumPy?
- How can I use Python and SciPy to find the zeros of a function?
- How do I create a numpy array of zeros using Python?
- How do I use the trapz function in Python SciPy?
- How do I convert a Python numpy.ndarray to a list?
- How do I use Python Scipy to perform a Z test?
- How can I use Python and Numpy to parse XML data?
- How do I create a numpy array of zeros using Python?
- How do I use the scipy ttest_ind function in Python?
- How do I calculate a Jacobian matrix using Python and NumPy?
See more codes...