python-scipyHow do I use Python Scipy to perform a linear fit?
Using Scipy to perform a linear fit is quite easy. First, import the scipy.optimize
module which contains the curve_fit
function:
from scipy.optimize import curve_fit
Then, define a function that describes the linear model:
def linear_model(x, a, b):
return a * x + b
Next, define the data points to fit:
x_data = [0, 1, 2, 3]
y_data = [1, 3, 5, 7]
Finally, use the curve_fit
function to fit the linear model to the data:
params, params_covariance = curve_fit(linear_model, x_data, y_data)
The params
variable contains the two parameters of the linear model, a
and b
, which are the slope and intercept respectively. For example, the output of the above code is:
params = [2. 1.]
This means that the linear model is y = 2x + 1
.
Code explanation
**
from scipy.optimize import curve_fit
- imports thecurve_fit
function from thescipy.optimize
moduledef linear_model(x, a, b):
- defines a function that describes the linear modelx_data = [0, 1, 2, 3]
- defines the x-values of the data pointsy_data = [1, 3, 5, 7]
- defines the y-values of the data pointsparams, params_covariance = curve_fit(linear_model, x_data, y_data)
- uses thecurve_fit
function to fit the linear model to the data
## Helpful links
More of Python Scipy
- How do I use Python Scipy to perform a Z test?
- How do I use Python Numpy to read and write Excel (.xlsx) files?
- How can I use Python and Numpy to zip files?
- How do I use the NumPy transpose function in Python?
- How can I use Python and SciPy to find the zeros of a function?
- How do I use the Python Scipy package?
- How do I use Scipy zeros in Python?
- How can I use Python and Numpy to parse XML data?
- How can I use Python Numpy to select elements from an array based on multiple conditions?
- How can I use Python and NumPy to perform a XOR operation?
See more codes...