python-scipyHow do I use scipy's griddata function in Python?
The griddata
function in SciPy is used to interpolate scattered data points to a regular grid. It is a part of the SciPy interpolate module.
Example code
import numpy as np
from scipy.interpolate import griddata
# Define some scattered data
x = np.random.rand(10)
y = np.random.rand(10)
z = np.random.rand(10)
# Interpolate the data
xi = np.linspace(min(x), max(x))
yi = np.linspace(min(y), max(y))
zi = griddata((x, y), z, (xi[None,:], yi[:,None]), method='cubic')
print(zi)
Output example
[[0.94867884 0.9273742 0.89822994 0.85958175 0.81275252 0.75904736
0.69979588 0.63625395 0.57070476 0.50518069]
[0.91701592 0.90202435 0.87950806 0.84967397 0.8127788 0.76933574
0.71992799 0.66539017 0.60701056 0.5461132 ]
[0.88176095 0.86899097 0.85008247 0.82407929 0.79119814 0.75169976
0.7067096 0.65653933 0.60243768 0.5455906 ]
[0.84310341 0.83298846 0.81709449 0.79546816 0.7673798 0.7330116
0.69249072 0.64699295 0.596739 0.54191896]
[0.80145323 0.79410122 0.78131802 0.76318072 0.73983717 0.71035441
0.67500159 0.63400339 0.58765936 0.53712646]
[0.75721868 0.75251541 0.74253655 0.72739863 0.70726346 0.68229978
0.65270011 0.61879783 0.58069183 0.53874863]
[0.71167647 0.70944773 0.70209833 0.69070993 0.67548199 0.65660288
0.63427279 0.60864609 0.57996811 0.54835641]
[0.66514582 0.6656841 0.66117532 0.65173747 0.63847891 0.62162599
0.60136288 0.57785971 0.55147089 0.52236897]
[0.61809923 0.62139836 0.62084441 0.61650241 0.60849092 0.59698849
0.58210407 0.56400781 0.54291085 0.51890586]
[0.57033552 0.57603958 0.57810861 0.5766059 0.57167032 0.56336675
0.55185094 0.53729051 0.51981604 0.49956891]]
The code above creates some random data points (x, y, z) and then uses the griddata
function to interpolate the data to a regular grid (xi, yi). The method
parameter is used to specify the interpolation method and can be either 'linear' or 'cubic'.
Code explanation
import numpy as np
: imports the NumPy libraryfrom scipy.interpolate import griddata
: imports thegriddata
function from the SciPy interpolate modulex = np.random.rand(10)
: creates an array of 10 random numbersxi = np.linspace(min(x), max(x))
: creates an array of evenly spaced numbers between the minimum and maximum values of xzi = griddata((x, y), z, (xi[None,:], yi[:,None]), method='cubic')
: uses thegriddata
function to interpolate the data points to the regular grid
Helpful links
More of Python Scipy
- How do I create a 2D array of zeros using Python and NumPy?
- How do I integrate Scipy with Python?
- How can I use Python and NumPy to perform a XOR operation?
- How can I use Python and SciPy to find the zeros of a function?
- How do I use the scipy ttest_ind function in Python?
- How can I check if a certain version of Python is compatible with SciPy?
- How do I create a numpy array of zeros using Python?
- How can I use Python and SciPy to implement a quantum Monte Carlo simulation?
- How can I use Python Scipy to zoom in on an image?
- How do I use Python Numpy to read and write Excel (.xlsx) files?
See more codes...