python-tensorflowHow can I adjust the log level for Python TensorFlow?
To adjust the log level for Python TensorFlow, you can use the tf.compat.v1.logging.set_verbosity()
function. This function takes an argument specifying the desired log level, which can be one of the following:
tf.compat.v1.logging.ERROR
tf.compat.v1.logging.WARNING
tf.compat.v1.logging.INFO
tf.compat.v1.logging.DEBUG
For example, to set the log level to tf.compat.v1.logging.INFO
, you can use the following code:
import tensorflow as tf
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO)
The output of this code will be None
.
Further information can be found in the TensorFlow documentation.
More of Python Tensorflow
- How do I resolve a SymbolAlreadyExposedError when the symbol "zeros" is already exposed as () in TensorFlow Python util tf_export?
- How can I use Python and TensorFlow to handle illegal hardware instructions in Zsh?
- How can I use Tensorflow 1.x with Python 3.8?
- How do I use TensorFlow 1.x with Python?
- How can I check the compatibility of different versions of Python and TensorFlow?
- How can I use Python TensorFlow in W3Schools?
- How can I install and use TensorFlow on a Windows machine using Python?
- ¿Cómo implementar reconocimiento facial con TensorFlow y Python?
- How do I troubleshoot a BLAS GEMM Launch Failed error in TensorFlow Python Framework?
- How do Python TensorFlow and Keras compare in terms of performance and features?
See more codes...