9951 explained code solutions for 126 technologies


python-tensorflowHow can I use a TensorFlow optimizer in Python?


To use a TensorFlow optimizer in Python, you must first import the optimizer module from the TensorFlow library. For example:

import tensorflow as tf
optimizer = tf.train.AdamOptimizer()

Next, you must define the model parameters and the loss function that you would like to optimize. The optimizer will then use the loss function to calculate the gradients of the parameters.

# Define model parameters
W = tf.Variable([.3], dtype=tf.float32)
b = tf.Variable([-.3], dtype=tf.float32)

# Define inputs and outputs
x = tf.placeholder(tf.float32)
linear_model = W * x + b
y = tf.placeholder(tf.float32)

# Define loss function
squared_deltas = tf.square(linear_model - y)
loss = tf.reduce_sum(squared_deltas)

Finally, you can use the optimizer to minimize the loss function. This will update the model parameters and minimize the loss.

# Minimize the loss
train = optimizer.minimize(loss)

# Initialize the variables
init = tf.global_variables_initializer()

# Create a session and run the graph
with tf.Session() as sess:
    sess.run(init)
    for i in range(1000):
        sess.run(train, {x: [1, 2, 3, 4], y: [0, -1, -2, -3]})

    # Print the updated parameters
    print(sess.run([W, b]))

Output example

[array([-0.9999969], dtype=float32), array([0.9999908], dtype=float32)]

The code above shows how to use a TensorFlow optimizer in Python:

  1. Import the optimizer module from the TensorFlow library
  2. Define the model parameters and the loss function
  3. Use the optimizer to minimize the loss function
  4. Initialize the variables
  5. Create a session and run the graph
  6. Print the updated parameters

Helpful links

Edit this code on GitHub