9951 explained code solutions for 126 technologies


python-tensorflowHow can I use Python and TensorFlow to create machine learning models?


Python and TensorFlow can be used together to create machine learning models. TensorFlow is an open source software library for numerical computation using data flow graphs. It enables developers to create data-driven machine learning models using Python.

Example code

import tensorflow as tf

# Create a placeholder for input data
x = tf.placeholder(tf.float32, shape=[None, 784])

# Create weights and bias
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))

# Create a model
y = tf.matmul(x, W) + b

# Create a loss function
y_true = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=y))

# Create an optimizer
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.5)
train = optimizer.minimize(cross_entropy)

# Initialize variables
init = tf.global_variables_initializer()

Explanation:

  1. Import TensorFlow as tf to use its functions.
  2. Create a placeholder x for input data.
  3. Create weights W and bias b for the model.
  4. Create a model by multiplying x with W and adding b.
  5. Create a loss function using softmax_cross_entropy_with_logits.
  6. Create an optimizer using GradientDescentOptimizer.
  7. Initialize variables using global_variables_initializer.

Helpful links

Edit this code on GitHub