python-kerasHow can I implement early stopping using Python and Keras?
Early stopping is a popular technique used to prevent overfitting in deep learning models. It can be implemented using Python and Keras by using the EarlyStopping callback. This callback monitors the model's performance, and when a chosen metric (e.g. validation loss) no longer improves, the training process is stopped.
Example code
from keras.callbacks import EarlyStopping
es = EarlyStopping(monitor='val_loss', patience=3)
model.fit(X_train, y_train, callbacks=[es], epochs=100)
The code above uses the EarlyStopping callback to monitor the validation loss of the model. The patience argument specifies how many epochs to wait before stopping training when the validation loss has not improved.
Code explanation
EarlyStopping: callback used to monitor the model's performance and stop training when a chosen metric no longer improvesmonitor: the metric to monitor (e.g. validation loss)patience: the number of epochs to wait before stopping training when the validation loss has not improved
Helpful links
More of Python Keras
- How do I install Keras on Windows using Python?
- How do I install the Python Keras .whl file?
- How do I use the to_categorical function in Python Keras?
- How do I use zero padding in Python Keras?
- How can I use Python Keras to create a neural network with zero hidden layers?
- How do I use Python Keras to zip a file?
- How can I enable verbose mode when using Python Keras?
- How can I resolve the issue of Python module Tensorflow.keras not being found?
- How do I use a webcam with Python and Keras?
- How can I visualize a Keras model using Python?
See more codes...