9951 explained code solutions for 126 technologies


python-kerasHow can I improve the validation accuracy of my Keras model using Python?


  1. Increase the number of training epochs: Increasing the number of training epochs can help improve the validation accuracy of your Keras model. This is done by setting the epochs parameter when creating the model. Example:
model = Sequential()
model.add(Dense(128, activation='relu', input_shape=(784,)))
model.add(Dense(64, activation='relu'))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])
model.fit(X_train, y_train, epochs=20)
  1. Increase the number of hidden layers: Increasing the number of hidden layers can help improve the validation accuracy of your Keras model. This is done by adding layers to the model using the model.add() method. Example:
model = Sequential()
model.add(Dense(128, activation='relu', input_shape=(784,)))
model.add(Dense(64, activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])
model.fit(X_train, y_train, epochs=20)
  1. Increase the number of neurons per layer: Increasing the number of neurons per layer can help improve the validation accuracy of your Keras model. This is done by setting the units parameter when adding layers to the model. Example:
model = Sequential()
model.add(Dense(256, activation='relu', input_shape=(784,)))
model.add(Dense(128, activation='relu'))
model.add(Dense(64, activation='relu'))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])
model.fit(X_train, y_train, epochs=20)
  1. Use a different activation function: Using a different activation function can help improve the validation accuracy of your Keras model. This is done by setting the activation parameter when adding layers to the model. Example:
model = Sequential()
model.add(Dense(128, activation='tanh', input_shape=(784,)))
model.add(Dense(64, activation='tanh'))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])
model.fit(X_train, y_train, epochs=20)
  1. Use a different optimizer: Using a different optimizer can help improve the validation accuracy of your Keras model. This is done by setting the optimizer parameter when creating the model. Example:
model = Sequential()
model.add(Dense(128, activation='relu', input_shape=(784,)))
model.add(Dense(64, activation='relu'))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='sgd',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])
model.fit(X_train, y_train, epochs=20)
  1. Use regularization techniques: Using regularization techniques such as dropout can help improve the validation accuracy of your Keras model. This is done by adding a Dropout layer to the model. Example:
model = Sequential()
model.add(Dense(128, activation='relu', input_shape=(784,)))
model.add(Dropout(0.2))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])
model.fit(X_train, y_train, epochs=20)

These are some of the ways to improve the validation accuracy of your Keras model using Python.

Helpful links

Edit this code on GitHub