python-kerasHow can I improve the validation accuracy of my Keras model using Python?
- Increase the number of training epochs: Increasing the number of training epochs can help improve the validation accuracy of your Keras model. This is done by setting the
epochsparameter when creating the model. Example:
model = Sequential()
model.add(Dense(128, activation='relu', input_shape=(784,)))
model.add(Dense(64, activation='relu'))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(X_train, y_train, epochs=20)
- Increase the number of hidden layers: Increasing the number of hidden layers can help improve the validation accuracy of your Keras model. This is done by adding layers to the model using the
model.add()method. Example:
model = Sequential()
model.add(Dense(128, activation='relu', input_shape=(784,)))
model.add(Dense(64, activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(X_train, y_train, epochs=20)
- Increase the number of neurons per layer: Increasing the number of neurons per layer can help improve the validation accuracy of your Keras model. This is done by setting the
unitsparameter when adding layers to the model. Example:
model = Sequential()
model.add(Dense(256, activation='relu', input_shape=(784,)))
model.add(Dense(128, activation='relu'))
model.add(Dense(64, activation='relu'))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(X_train, y_train, epochs=20)
- Use a different activation function: Using a different activation function can help improve the validation accuracy of your Keras model. This is done by setting the
activationparameter when adding layers to the model. Example:
model = Sequential()
model.add(Dense(128, activation='tanh', input_shape=(784,)))
model.add(Dense(64, activation='tanh'))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(X_train, y_train, epochs=20)
- Use a different optimizer: Using a different optimizer can help improve the validation accuracy of your Keras model. This is done by setting the
optimizerparameter when creating the model. Example:
model = Sequential()
model.add(Dense(128, activation='relu', input_shape=(784,)))
model.add(Dense(64, activation='relu'))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='sgd',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(X_train, y_train, epochs=20)
- Use regularization techniques: Using regularization techniques such as dropout can help improve the validation accuracy of your Keras model. This is done by adding a
Dropoutlayer to the model. Example:
model = Sequential()
model.add(Dense(128, activation='relu', input_shape=(784,)))
model.add(Dropout(0.2))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(X_train, y_train, epochs=20)
These are some of the ways to improve the validation accuracy of your Keras model using Python.
Helpful links
- Keras Documentation
- Deep Learning Tutorials: Includes tutorials on using Keras and improving model accuracy.
More of Python Keras
- How do I use Python Keras to zip a file?
- How can I use word2vec and Keras to develop a machine learning model in Python?
- How can I use XGBoost, Python and Keras together to build a machine learning model?
- How do I use zero padding in Python Keras?
- How do I use Python's tf.keras.utils.get_file to retrieve a file?
- How do I use TensorFlow, Python, Keras, and utils to_categorical?
- How do I create a sequential model with Python and Keras?
- How can I use the Adam optimizer in TensorFlow?
- How can I install the python module tensorflow.keras in R?
- How do I install the Python Keras .whl file?
See more codes...