python-kerasHow can I improve the validation accuracy of my Keras model using Python?
- Increase the number of training epochs: Increasing the number of training epochs can help improve the validation accuracy of your Keras model. This is done by setting the
epochs
parameter when creating the model. Example:
model = Sequential()
model.add(Dense(128, activation='relu', input_shape=(784,)))
model.add(Dense(64, activation='relu'))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(X_train, y_train, epochs=20)
- Increase the number of hidden layers: Increasing the number of hidden layers can help improve the validation accuracy of your Keras model. This is done by adding layers to the model using the
model.add()
method. Example:
model = Sequential()
model.add(Dense(128, activation='relu', input_shape=(784,)))
model.add(Dense(64, activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(X_train, y_train, epochs=20)
- Increase the number of neurons per layer: Increasing the number of neurons per layer can help improve the validation accuracy of your Keras model. This is done by setting the
units
parameter when adding layers to the model. Example:
model = Sequential()
model.add(Dense(256, activation='relu', input_shape=(784,)))
model.add(Dense(128, activation='relu'))
model.add(Dense(64, activation='relu'))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(X_train, y_train, epochs=20)
- Use a different activation function: Using a different activation function can help improve the validation accuracy of your Keras model. This is done by setting the
activation
parameter when adding layers to the model. Example:
model = Sequential()
model.add(Dense(128, activation='tanh', input_shape=(784,)))
model.add(Dense(64, activation='tanh'))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(X_train, y_train, epochs=20)
- Use a different optimizer: Using a different optimizer can help improve the validation accuracy of your Keras model. This is done by setting the
optimizer
parameter when creating the model. Example:
model = Sequential()
model.add(Dense(128, activation='relu', input_shape=(784,)))
model.add(Dense(64, activation='relu'))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='sgd',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(X_train, y_train, epochs=20)
- Use regularization techniques: Using regularization techniques such as dropout can help improve the validation accuracy of your Keras model. This is done by adding a
Dropout
layer to the model. Example:
model = Sequential()
model.add(Dense(128, activation='relu', input_shape=(784,)))
model.add(Dropout(0.2))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(X_train, y_train, epochs=20)
These are some of the ways to improve the validation accuracy of your Keras model using Python.
Helpful links
- Keras Documentation
- Deep Learning Tutorials: Includes tutorials on using Keras and improving model accuracy.
More of Python Keras
- How do I use Python Keras to create a Zoom application?
- How can I use YOLO with Python and Keras?
- How can I use Python with Keras to build a deep learning model?
- How can I visualize a Keras model using Python?
- How can I use Python, OpenCV, and Keras together to build a machine learning model?
- How do I use a webcam with Python and Keras?
- How do I use validation_data when creating a Keras model in Python?
- How do I use Python and Keras to create a VGG16 model?
- How can I use word2vec and Keras to develop a machine learning model in Python?
See more codes...