python-kerasHow can I use Python and Keras to build a regression model?
To build a regression model with Python and Keras, you will need to install the Keras library and import it into your Python script. The following example code will demonstrate how to build a simple regression model with Keras:
import keras
from keras.models import Sequential
from keras.layers import Dense
# Defining the model
model = Sequential()
model.add(Dense(1, input_dim=1, activation='linear'))
# Compiling the model
model.compile(optimizer='adam', loss='mean_squared_error', metrics=['mse'])
# Fitting the model
model.fit(x_train, y_train, epochs=50, batch_size=32, verbose=1)
The code above consists of the following parts:
- Importing the necessary libraries:
import keras
andfrom keras.models import Sequential
andfrom keras.layers import Dense
- Defining the model:
model = Sequential()
andmodel.add(Dense(1, input_dim=1, activation='linear'))
- Compiling the model:
model.compile(optimizer='adam', loss='mean_squared_error', metrics=['mse'])
- Fitting the model:
model.fit(x_train, y_train, epochs=50, batch_size=32, verbose=1)
After running this code, the model will be trained and ready to be used for predictions.
Helpful links
More of Python Keras
- How do I use Python Keras to zip a file?
- How do I use validation_data when creating a Keras model in Python?
- How do I use Python and Keras to create a VGG16 model?
- How do I check which version of Keras I am using in Python?
- How can I use Python and Keras to create a backend for my application?
- How can I use XGBoost, Python and Keras together to build a machine learning model?
- How can I improve the validation accuracy of my Keras model using Python?
- How do I use zero padding in Python Keras?
- How can I install the python module tensorflow.keras in R?
- How can I use Python Keras to create a neural network with zero hidden layers?
See more codes...