9951 explained code solutions for 126 technologies


python-kerasHow can I use Python and Keras to create a transformer model?


To use Python and Keras to create a transformer model, the following steps should be taken:

  1. Import the necessary libraries. This includes keras, numpy, tensorflow, and matplotlib:
import keras
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
  1. Create a transformer model. This can be done using the keras.layers.Transformer class. For example:
transformer_model = keras.layers.Transformer(
    num_layers=4,
    d_model=128,
    num_heads=4,
    dff=128,
    input_vocab_size=8500,
    target_vocab_size=8000,
    dropout_rate=0.1
)
  1. Compile the model. This can be done using the .compile() method. For example:
transformer_model.compile(
    optimizer=keras.optimizers.Adam(0.001),
    loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    metrics=[keras.metrics.SparseCategoricalAccuracy(name="accuracy")]
)
  1. Train the model. This can be done using the .fit() method. For example:
history = transformer_model.fit(
    x_train,
    y_train,
    batch_size=32,
    epochs=5
)
  1. Evaluate the model. This can be done using the .evaluate() method. For example:
loss, accuracy = transformer_model.evaluate(x_test, y_test)
print("Loss: {}, Accuracy: {}".format(loss, accuracy))
  1. Visualize the results. This can be done using the matplotlib library. For example:
plt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['loss'], label='loss')
plt.xlabel('Epoch')
plt.ylabel('Accuracy/Loss')
plt.legend(loc='lower right')

Helpful links

Edit this code on GitHub