python-kerasHow can I use Python Keras GRU to build a deep learning model?
Using Python Keras GRU to build a deep learning model is a relatively straightforward process. To create a GRU model with Keras, you can use the following code:
from keras.models import Sequential
from keras.layers import GRU
model = Sequential()
model.add(GRU(units=64, input_shape=(None, 1)))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')
The code above creates a simple GRU model with one layer of 64 units and a single output. The input shape is (None, 1) which means that the model will accept inputs with an unspecified number of timesteps and one feature. The model is then compiled with the 'adam' optimizer and the 'mse' loss function.
Code explanation
from keras.models import Sequential
: imports the Sequential class from the keras.models module.from keras.layers import GRU
: imports the GRU class from the keras.layers module.model = Sequential()
: creates a Sequential model object.model.add(GRU(units=64, input_shape=(None, 1)))
: adds a GRU layer with 64 units and an input shape of (None, 1).model.add(Dense(1))
: adds a Dense layer with one output.model.compile(optimizer='adam', loss='mse')
: compiles the model with the 'adam' optimizer and the 'mse' loss function.
Helpful links
More of Python Keras
- What is Python Keras and how is it used?
- How can I use Python Keras to create a neural network with zero hidden layers?
- How do I use validation_data when creating a Keras model in Python?
- How do I check which version of Keras I am using in Python?
- How do I use Python's tf.keras.utils.get_file to retrieve a file?
- How do I use the to_categorical function in Python Keras?
- How do I set the input shape when using Keras with Python?
- How do I use Python Keras to zip a file?
- How do I save weights in a Python Keras model?
- How do I use the to_categorical function from TensorFlow in Python to convert data into a format suitable for a neural network?
See more codes...