python-kerasHow can I use Python Keras optimizers to optimize my model?
Keras optimizers are an important part of the model optimization process. Optimizers can help improve the accuracy of the model by adjusting the weights of the model in order to minimize the loss function.
Using a Keras optimizer is relatively straightforward. The following example shows how to use the Adam optimizer to optimize a model:
# Import the Adam optimizer
from keras.optimizers import Adam
# Create an Adam optimizer
optimizer = Adam(lr=0.001)
# Compile the model
model.compile(optimizer=optimizer, loss='binary_crossentropy', metrics=['accuracy'])
# Fit the model
model.fit(X, y, epochs=100)
Code explanation
- Import the Adam optimizer -
from keras.optimizers import Adam
- Create an Adam optimizer -
optimizer = Adam(lr=0.001)
- Compile the model -
model.compile(optimizer=optimizer, loss='binary_crossentropy', metrics=['accuracy'])
- Fit the model -
model.fit(X, y, epochs=100)
Helpful links
More of Python Keras
- How do I use Python Keras to zip a file?
- How do I use zero padding in Python Keras?
- How do I use Python Keras to create a Zoom application?
- How do I save weights in a Python Keras model?
- How do I use Python and Keras to access datasets?
- How can I use Python, Keras, and PyTorch together to create a deep learning model?
- How do I use the Keras layers.dense function in Python?
- How do I generate a confusion matrix using Python and Keras?
- How can I use word2vec and Keras to develop a machine learning model in Python?
- How can I resolve the issue of Python module Tensorflow.keras not being found?
See more codes...