python-kerasHow can I use Python Keras optimizers to optimize my model?
Keras optimizers are an important part of the model optimization process. Optimizers can help improve the accuracy of the model by adjusting the weights of the model in order to minimize the loss function.
Using a Keras optimizer is relatively straightforward. The following example shows how to use the Adam optimizer to optimize a model:
# Import the Adam optimizer
from keras.optimizers import Adam
# Create an Adam optimizer
optimizer = Adam(lr=0.001)
# Compile the model
model.compile(optimizer=optimizer, loss='binary_crossentropy', metrics=['accuracy'])
# Fit the model
model.fit(X, y, epochs=100)
Code explanation
- Import the Adam optimizer -
from keras.optimizers import Adam
- Create an Adam optimizer -
optimizer = Adam(lr=0.001)
- Compile the model -
model.compile(optimizer=optimizer, loss='binary_crossentropy', metrics=['accuracy'])
- Fit the model -
model.fit(X, y, epochs=100)
Helpful links
More of Python Keras
- How do I use Python Keras to zip a file?
- How can I use Python and Keras together?
- How do I use validation_data when creating a Keras model in Python?
- How do I save weights in a Python Keras model?
- How can I use Python Keras on Windows?
- How do I check which version of Keras I am using in Python?
- How do I use Python's tf.keras.utils.get_file to retrieve a file?
- How can I use Python, Keras, and PyTorch together to create a deep learning model?
- How can I split my data into train and test sets using Python and Keras?
- How can I use Python Keras online?
See more codes...