python-kerasHow can I use Python Keras optimizers to optimize my model?
Keras optimizers are an important part of the model optimization process. Optimizers can help improve the accuracy of the model by adjusting the weights of the model in order to minimize the loss function.
Using a Keras optimizer is relatively straightforward. The following example shows how to use the Adam optimizer to optimize a model:
# Import the Adam optimizer
from keras.optimizers import Adam
# Create an Adam optimizer
optimizer = Adam(lr=0.001)
# Compile the model
model.compile(optimizer=optimizer, loss='binary_crossentropy', metrics=['accuracy'])
# Fit the model
model.fit(X, y, epochs=100)
Code explanation
- Import the Adam optimizer -
from keras.optimizers import Adam
- Create an Adam optimizer -
optimizer = Adam(lr=0.001)
- Compile the model -
model.compile(optimizer=optimizer, loss='binary_crossentropy', metrics=['accuracy'])
- Fit the model -
model.fit(X, y, epochs=100)
Helpful links
More of Python Keras
- How can I enable verbose mode when using Python Keras?
- How do I use zero padding in Python Keras?
- How can I use YOLO with Python and Keras?
- How do I use Python's tf.keras.utils.get_file to retrieve a file?
- How do I use Python Keras to zip a file?
- How can I use word2vec and Keras to develop a machine learning model in Python?
- How can I resolve the issue of Python module Tensorflow.keras not being found?
- How do I save weights in a Python Keras model?
- How do I check which version of Keras I am using in Python?
- How can I split my data into train and test sets using Python and Keras?
See more codes...