python-kerasHow can I use Python Keras optimizers to optimize my model?
Keras optimizers are an important part of the model optimization process. Optimizers can help improve the accuracy of the model by adjusting the weights of the model in order to minimize the loss function.
Using a Keras optimizer is relatively straightforward. The following example shows how to use the Adam optimizer to optimize a model:
# Import the Adam optimizer
from keras.optimizers import Adam
# Create an Adam optimizer
optimizer = Adam(lr=0.001)
# Compile the model
model.compile(optimizer=optimizer, loss='binary_crossentropy', metrics=['accuracy'])
# Fit the model
model.fit(X, y, epochs=100)
Code explanation
- Import the Adam optimizer -
from keras.optimizers import Adam - Create an Adam optimizer -
optimizer = Adam(lr=0.001) - Compile the model -
model.compile(optimizer=optimizer, loss='binary_crossentropy', metrics=['accuracy']) - Fit the model -
model.fit(X, y, epochs=100)
Helpful links
More of Python Keras
- How do I use zero padding in Python Keras?
- How do I use Python Keras to zip a file?
- How can I use YOLO with Python and Keras?
- How can I use XGBoost, Python and Keras together to build a machine learning model?
- How can I use Python with Keras to build a deep learning model?
- How do I check which version of Keras I am using in Python?
- How can I improve the validation accuracy of my Keras model using Python?
- How do I use TensorFlow, Python, Keras, and utils to_categorical?
- How do I uninstall Keras from my Python environment?
- How do I install the Python Keras .whl file?
See more codes...