python-kerasHow can I use the to_categorical attribute in the tensorflow.python.keras.utils module?
The to_categorical() attribute in the tensorflow.python.keras.utils module can be used to convert a class vector (integers) to binary class matrix. This is useful for working with categorical data in machine learning models.
Here is an example of using to_categorical():
from tensorflow.python.keras.utils import to_categorical
# example of class vector
y = [0, 1, 2, 2, 1]
# convert to binary class matrix
y_cat = to_categorical(y)
print(y_cat)
The output of this code is:
[[1. 0. 0.]
 [0. 1. 0.]
 [0. 0. 1.]
 [0. 0. 1.]
 [0. 1. 0.]]
The to_categorical() attribute takes two parameters:
y: class vector to be converted into a matrixnum_classes: total number of classes
The y parameter is the class vector that needs to be converted to a binary class matrix. The num_classes parameter is the total number of classes in the data.
Helpful links
More of Python Keras
- How do I check which version of Keras I am using in Python?
 - How do I install the Python Keras .whl file?
 - How can I improve the validation accuracy of my Keras model using Python?
 - How do I get the version of Keras I am using in Python?
 - How do I use Python Keras to perform a train-test split?
 - How do I use Python Keras to zip a file?
 - How can I use word2vec and Keras to develop a machine learning model in Python?
 - How can I use Python, Keras and BERT for deep learning?
 - How do I use validation_data when creating a Keras model in Python?
 - How do I save weights in a Python Keras model?
 
See more codes...