python-kerasHow do I create a sequential model using Python and Keras?
Creating a sequential model using Python and Keras is relatively straightforward. To begin, import the necessary libraries:
import keras
from keras.models import Sequential
from keras.layers import Dense
Next, create a Sequential model object:
model = Sequential()
The model can then be built by adding layers one at a time. For example, adding a Dense layer with 10 neurons and an input shape of 8:
model.add(Dense(10, input_shape=(8,)))
More layers can be added in a similar fashion. For example, adding a second Dense layer with 6 neurons:
model.add(Dense(6))
Once the model is built, it can be compiled using the .compile() method:
model.compile(optimizer='adam', loss='mse')
The model can then be fit using the .fit() method:
model.fit(X, y, epochs=20)
The model can then be evaluated using the .evaluate() method:
model.evaluate(X, y)
Code explanation
- Importing Libraries:
import keras,from keras.models import Sequential,from keras.layers import Dense - Creating a Sequential Model Object:
model = Sequential() - Adding Layers:
model.add(Dense(10, input_shape=(8,))),model.add(Dense(6)) - Compiling the Model:
model.compile(optimizer='adam', loss='mse') - Fitting the Model:
model.fit(X, y, epochs=20) - Evaluating the Model:
model.evaluate(X, y)
Helpful links
More of Python Keras
- How can I improve the validation accuracy of my Keras model using Python?
- How do I use zero padding in Python Keras?
- How can I use word2vec and Keras to develop a machine learning model in Python?
- How do I check which version of Keras I am using in Python?
- How do I use Python Keras to zip a file?
- How do I use validation_data when creating a Keras model in Python?
- How can I use XGBoost, Python and Keras together to build a machine learning model?
- How can I install the python module tensorflow.keras in R?
- How do I use Python and Keras to create a VGG16 model?
- How can I use the to_categorical attribute in the tensorflow.python.keras.utils module?
See more codes...