python-kerasHow do I set the batch size when using Python and Keras?
The batch size is an important hyperparameter that controls the number of samples propagated through the network before the weights are updated.
In Python and Keras, the batch size can be set using the batch_size argument of the fit() method.
For example, if we want to set the batch size to 32, we can do so as follows:
model.fit(x_train, y_train, batch_size=32)
The batch_size argument can also be passed to the fit_generator() method if using a generator to supply data.
model.fit_generator(generator, batch_size=32)
The batch size can also be set when creating the model. For example, if we are using a Sequential model, we can pass the batch_input_shape argument to specify the batch size.
model = Sequential(batch_input_shape=(32, x_train.shape[1], x_train.shape[2]))
Helpful links
More of Python Keras
- How do I use Python Keras to zip a file?
- How can I use Python with Keras to build a deep learning model?
- How can I improve the validation accuracy of my Keras model using Python?
- How can I enable verbose mode when using Python Keras?
- How do I use Python and Keras to resize an image?
- How do I use zero padding in Python Keras?
- How can I use Python Keras to develop a reinforcement learning model?
- How can I use Python Keras to create a neural network with zero hidden layers?
- How can I use word2vec and Keras to develop a machine learning model in Python?
- How do I install the Python Keras .whl file?
See more codes...