python-kerasHow do I use Python Keras to create a regression example?
Using Python Keras to create a regression example is a relatively simple process. First, you need to import the necessary libraries. This includes keras
and numpy
:
import keras
import numpy as np
Next, you need to define the model. This can be done using the Sequential
class from the keras
library. The model should include the necessary layers, such as Dense
layers and an activation function:
model = keras.Sequential()
model.add(keras.layers.Dense(units=64, activation='relu', input_dim=2))
model.add(keras.layers.Dense(units=1))
Then, you need to compile the model. This is done by calling the compile
method on the model and specifying the optimizer and loss function:
model.compile(loss='mean_squared_error',
optimizer=keras.optimizers.Adam(0.01))
Next, you need to provide the data for the model. This can be done by creating a numpy
array of input data and labels:
x_train = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
y_train = np.array([0, 1, 1, 0])
Finally, you can fit the model to the data by calling the fit
method on the model and specifying the data and number of epochs:
model.fit(x_train, y_train, epochs=1000)
The output of this example would be the loss values for each of the 1000 epochs.
Parts of the Code
import keras
: imports thekeras
libraryimport numpy as np
: imports thenumpy
library asnp
model = keras.Sequential()
: creates a newSequential
modelmodel.add(keras.layers.Dense(units=64, activation='relu', input_dim=2))
: adds aDense
layer with 64 units, a ReLU activation function, and an input dimension of 2model.add(keras.layers.Dense(units=1))
: adds aDense
layer with 1 unitmodel.compile(loss='mean_squared_error', optimizer=keras.optimizers.Adam(0.01))
: compiles the model with a mean squared error loss function and an Adam optimizer with a learning rate of 0.01x_train = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
: creates anumpy
array of input datay_train = np.array([0, 1, 1, 0])
: creates anumpy
array of labelsmodel.fit(x_train, y_train, epochs=1000)
: fits the model to the data for 1000 epochs
Relevant Links
More of Python Keras
- How can I use YOLO with Python and Keras?
- How can I use Python with Keras to build a deep learning model?
- How can I improve the validation accuracy of my Keras model using Python?
- How do I use a webcam with Python and Keras?
- How do I use Python and Keras to create a VGG16 model?
- How do I use Python Keras to zip a file?
- How do I use validation_data when creating a Keras model in Python?
- How can I visualize a Keras model using Python?
- How do I check which version of Keras I am using in Python?
- How can I use word2vec and Keras to develop a machine learning model in Python?
See more codes...