python-kerasHow to use Python and Keras to implement a U-Net architecture?
Using Python and Keras, a U-Net architecture can be implemented in the following steps:
- Import the necessary packages:
import keras
import tensorflow as tf
from keras.models import Model
from keras.layers import Input, Conv2D, MaxPooling2D, Dropout, UpSampling2D, concatenate
- Create the input layer:
inputs = Input((IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS))
- Create the contracting path:
c1 = Conv2D(16, (3, 3), activation='relu', padding='same') (inputs)
c1 = Dropout(0.1) (c1)
c1 = Conv2D(16, (3, 3), activation='relu', padding='same') (c1)
p1 = MaxPooling2D((2, 2)) (c1)
c2 = Conv2D(32, (3, 3), activation='relu', padding='same') (p1)
c2 = Dropout(0.1) (c2)
c2 = Conv2D(32, (3, 3), activation='relu', padding='same') (c2)
p2 = MaxPooling2D((2, 2)) (c2)
c3 = Conv2D(64, (3, 3), activation='relu', padding='same') (p2)
c3 = Dropout(0.2) (c3)
c3 = Conv2D(64, (3, 3), activation='relu', padding='same') (c3)
p3 = MaxPooling2D((2, 2)) (c3)
c4 = Conv2D(128, (3, 3), activation='relu', padding='same') (p3)
c4 = Dropout(0.2) (c4)
c4 = Conv2D(128, (3, 3), activation='relu', padding='same') (c4)
p4 = MaxPooling2D(pool_size=(2, 2)) (c4)
- Create the expansive path:
u5 = Conv2D(128, (3, 3), activation='relu', padding='same') (p4)
u5 = Dropout(0.2) (u5)
u5 = Conv2D(128, (3, 3), activation='relu', padding='same') (u5)
u6 = Conv2D(64, (3, 3), activation='relu', padding='same') (u5)
u6 = Dropout(0.2) (u6)
u6 = Conv2D(64, (3, 3), activation='relu', padding='same') (u6)
u7 = Conv2D(32, (3, 3), activation='relu', padding='same') (u6)
u7 = Dropout(0.1) (u7)
u7 = Conv2D(32, (3, 3), activation='relu', padding='same') (u7)
u8 = Conv2D(16, (3, 3), activation='relu', padding='same') (u7)
u8 = Dropout(0.1) (u8)
u8 = Conv2D(16, (3, 3), activation='relu', padding='same') (u8)
- Create the output layer:
outputs = Conv2D(1, (1, 1), activation='sigmoid') (u8)
- Create the model:
model = Model(inputs=[inputs], outputs=[outputs])
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=[dice_coef])
- Train the model:
model.fit(X_train, y_train, validation_data=(X_val, y_val), batch_size=16, epochs=50)
Helpful links
More of Python Keras
- How can I improve the validation accuracy of my Keras model using Python?
- How do I use Python Keras to zip a file?
- How do I use zero padding in Python Keras?
- How can I visualize a Keras model using Python?
- How can I use YOLO with Python and Keras?
- How can I use Python Keras to develop a reinforcement learning model?
- How do I use validation_data when creating a Keras model in Python?
- How can I use Python and Keras to create a backend for my application?
- How do I save a Keras model as an H5 file in Python?
- How can I use XGBoost, Python and Keras together to build a machine learning model?
See more codes...