9951 explained code solutions for 126 technologies


python-pytorchHow can I use Python and PyTorch to create a U-Net architecture?


Using Python and PyTorch, you can create a U-Net architecture by following the steps below:

  1. Define the neural network architecture. This includes defining the input and output sizes, the number of layers, the number of filters, and the activation functions.
import torch.nn as nn

class UNet(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(UNet, self).__init__()
        self.encoder = self.create_encoder(in_channels)
        self.decoder = self.create_decoder(out_channels)

    def create_encoder(self, in_channels):
        # ...
        return encoder

    def create_decoder(self, out_channels):
        # ...
        return decoder

net = UNet(3, 2)
  1. Define the encoder and decoder blocks. This includes defining the convolutional layers, pooling layers, and upsampling layers.
def create_encoder(self, in_channels):
    encoder = nn.Sequential(
        # First convolutional layer
        nn.Conv2d(in_channels, 64, 3, padding=1),
        nn.ReLU(inplace=True),
        nn.Conv2d(64, 64, 3, padding=1),
        nn.ReLU(inplace=True),
        nn.MaxPool2d(2, 2),
        # Second convolutional layer
        nn.Conv2d(64, 128, 3, padding=1),
        nn.ReLU(inplace=True),
        nn.Conv2d(128, 128, 3, padding=1),
        nn.ReLU(inplace=True),
        nn.MaxPool2d(2, 2),
        # Third convolutional layer
        nn.Conv2d(128, 256, 3, padding=1),
        nn.ReLU(inplace=True),
        nn.Conv2d(256, 256, 3, padding=1),
        nn.ReLU(inplace=True),
        nn.MaxPool2d(2, 2),
        # Fourth convolutional layer
        nn.Conv2d(256, 512, 3, padding=1),
        nn.ReLU(inplace=True),
        nn.Conv2d(512, 512, 3, padding=1),
        nn.ReLU(inplace=True),
        nn.MaxPool2d(2, 2),
        # Fifth convolutional layer
        nn.Conv2d(512, 1024, 3, padding=1),
        nn.ReLU(inplace=True),
        nn.Conv2d(1024, 1024, 3, padding=1),
        nn.ReLU(inplace=True)
    )
    return encoder

def create_decoder(self, out_channels):
    decoder = nn.Sequential(
        # First upsampling layer
        nn.Upsample(scale_factor=2, mode='bilinear'),
        nn.Conv2d(1024, 512, 3, padding=1),
        nn.ReLU(inplace=True),
        nn.Conv2d(512, 512, 3, padding=1),
        nn.ReLU(inplace=True),
        # Second upsampling layer
        nn.Upsample(scale_factor=2, mode='bilinear'),
        nn.Conv2d(512, 256, 3, padding=1),
        nn.ReLU(inplace=True),
        nn.Conv2d(256, 256, 3, padding=1),
        nn.ReLU(inplace=True),
        # Third upsampling layer
        nn.Upsample(scale_factor=2, mode='bilinear'),
        nn.Conv2d(256, 128, 3, padding=1),
        nn.ReLU(inplace=True),
        nn.Conv2d(128, 128, 3, padding=1),
        nn.ReLU(inplace=True),
        # Fourth upsampling layer
        nn.Upsample(scale_factor=2, mode='bilinear'),
        nn.Conv2d(128, 64, 3, padding=1),
        nn.ReLU(inplace=True),
        nn.Conv2d(64, 64, 3, padding=1),
        nn.ReLU(inplace=True),
        # Output layer
        nn.Conv2d(64, out_channels, 1),
        nn.Sigmoid()
    )
    return decoder
  1. Define the forward pass. This includes passing the input data through the encoder and decoder blocks.
def forward(self, x):
    x = self.encoder(x)
    x = self.decoder(x)
    return x
  1. Train the model using the PyTorch API.
# Train the model
net.train()
for i in range(num_epochs):
    # ...
    # Compute the loss
    loss = criterion(output, target)
    # Backpropagate the loss
    loss.backward()
    # Update the weights
    optimizer.step()

These steps will allow you to create a U-Net architecture using Python and PyTorch.

Helpful links

Edit this code on GitHub